精英家教網 > 初中數學 > 題目詳情

【題目】已知樣本x1、x2,…,xn的方差是2,則樣本3x1+2,3x2+2,…,3xn+2的方差是_________

【答案】18

【解析】∵樣本x1、x2、…、xn的方差為2,
又∵一組數據中的各個數據都擴大幾倍,則新數據的方差擴大其平方倍,
∴樣本3x1、3x2、…、3xn的方差為32×2=18,
∵一組數據中的各個數據都加上同一個數后得到的新數據的方差與原數據的方差相等,
∴樣本3x1+2、3x2+2、…、3xn+2的方差為18.
故答案是:18.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】已知,平行四邊形ABCD中,AB=5,AD=12,BD=13.求證:平行四邊形ABCD是矩形。

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】56.2萬平方米用科學記數法表示正確的是(
A.5.62×104m2
B.56.2×104m2
C.5.62×105m2
D.0.562×103m2

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】國家統(tǒng)計局2011年初公布數據顯示,2010年全年國內生產總值398000億元,超過日本,成為全球第二大經濟體,用科學記數法可表示為(
A.0.398×106億元
B.3.98×105億元
C.39.8×104億元
D.398×103億元

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】將點P(﹣1,3)向右平移2個單位得到點P′,P的坐標是______

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖1,在四邊形ABCD中,∠DAB被對角線AC平分,且AC2=AB·AD,我們稱該四邊形為“可分四邊形”,∠DAB稱為“可分角”.

(1)如圖2,四邊形ABCD為“可分四邊形”,∠DAB為“可分角”,如果∠DCB=∠DAB,則∠DAB=_________.

(2)如圖3,在四邊形ABCD中,∠DAB=60°,AC平分∠DAB,且∠BCD=150°,求證:四邊形ABCD為“可分四邊形”;

(3)現有四邊形ABCD為“可分四邊形”,∠DAB為“可分角”,且AC=4,BC=2,∠D=90°,求AD的長?

圖1 圖2 圖3

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】xx是方程x+x-1=0的兩根,則(x-2·x-2)的值為( )

A. 2B. 4C. 5D. -2

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知任意三角形的三邊長,如何求三角形面積?

古希臘的幾何學家海倫解決了這個問題,在他的著作《度量論》一書中給出了計算公式﹣﹣海倫公式S=(其中a,bc是三角形的三邊長,p=,S為三角形的面積),并給出了證明

例如:在△ABC中,a=3,b=4,c=5,那么它的面積可以這樣計算:

a=3,b=4,c=5p==6,S===6

事實上,對于已知三角形的三邊長求三角形面積的問題,還可用我國南宋時期數學家秦九韶提出的秦九韶公式等方法解決.

如圖,在△ABC中,BC=5,AC=6,AB=9

1)用海倫公式求△ABC的面積;

2)求△ABC的內切圓半徑r

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】拋物線y3x2+2x1向上平移3個單位長度后的函數解析式為( 。

A. y3x2+2x4B. y3x2+2x4C. y3x2+2x+2D. y3x2+2x+3

查看答案和解析>>

同步練習冊答案