【題目】如圖,△ABC為等腰三角形,AB=AC,O是底邊BC的中點(diǎn),⊙O與腰AB相切于點(diǎn)D.
(1)求證:AC與⊙O相切;
(2)已知AB=5,BC=6,求⊙O的半徑.
【答案】(1)見解析;(2)
【解析】
(1)連結(jié)OD,過點(diǎn)O作OE⊥AC于E點(diǎn).易證△OBD≌△OCE,從而得OE=OD,從而得證;
(2)連接AO,先利用等腰三角形三線合一的性質(zhì)得AO⊥BC, OB=BC=3;然后在Rt△AOB中利用勾股定理求出OA,再利用等積關(guān)系求出OD即可得解.
解:(1)證明:連結(jié)OD,過點(diǎn)O作OE⊥AC于E點(diǎn),如圖1所示:
∵AB切⊙O于D,
∴OD⊥AB,
∴∠ODB=∠OEC=90°,
∵O是BC的中點(diǎn),
∴OB=OC,
∵AB=AC
∴
在△OBD和△OCE中,
,
∴△OBD≌△OCE(AAS),
∴OE=OD,即OE是⊙O的半徑,
∴AC與⊙O相切;
(2)連接AO,如圖2所示:
∵OB=OC,AB=AC
則AO⊥BC,
∴OB=BC=3,
∴在Rt△AOB中,OA===4,
∴由等積關(guān)系得:OBOA=ABOD,
∴OD===,
即⊙D的半徑為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】江蘇省第十九屆運(yùn)動會將于2018年9月在揚(yáng)州舉行開幕式,某校為了了解學(xué)生“最喜愛的省運(yùn)會項(xiàng)目”的情況,隨機(jī)抽取了部分學(xué)生進(jìn)行問卷調(diào)查,規(guī)定每人從“籃球”、“羽毛球”、“自行車”、“游泳”和“其他”五個選項(xiàng)中必須選擇且只能選擇一個,并將調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計圖表.
最喜愛的省運(yùn)會項(xiàng)目的人數(shù)調(diào)查統(tǒng)計表
根據(jù)以上信息,請回答下列問題:
(1)這次調(diào)查的樣本容量是 , ;
(2)扇形統(tǒng)計圖中“自行車”對應(yīng)的扇形的圓心角為 度;
(3)若該校有1200名學(xué)生,估計該校最喜愛的省運(yùn)會項(xiàng)目是籃球的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場用24 000元購入一批空調(diào),然后以每臺3 000元的價格銷售,因天氣炎熱.空調(diào)很快售完;商場又用52 000元再次購入一批該種型號的空調(diào),數(shù)量是第一次購入的2倍,但購入的單價上調(diào)了200元,每臺的售價也上調(diào)了200元.
(1)商場第一次購入的空調(diào)每臺進(jìn)價是多少元?
(2)商場既要盡快售完第二次購入的空調(diào),又要在第二次空調(diào)銷售中獲得的利潤率不低于20%,打算將第二次購入的部分空調(diào)按每臺九五折出售,最多可將多少臺空調(diào)打折出售?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)O為正方形ABCD的中心,BE平分∠DBC交DC于點(diǎn)E,延長BC到點(diǎn)F,使FC=EC,連結(jié)DF交BE的延長線于點(diǎn)H,連結(jié)OH交DC于點(diǎn)G,連結(jié)HC.則以下四個結(jié)論中:①OH∥BF,②GH=BC,③OD=BF,④∠CHF=45°。正確結(jié)論的個數(shù)為( )
A. 4個 B. 3個 C. 2個 D. 1個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,扇形AOB,且OB=4,∠AOB=90°,C為弧AB上任意一點(diǎn),過C點(diǎn)作CD⊥OB于點(diǎn)D,設(shè)△ODC的內(nèi)心為E,連接OE、CE,當(dāng)點(diǎn)C從點(diǎn)B運(yùn)動到點(diǎn)A時,內(nèi)心E所經(jīng)過的路徑長為 ________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰直角三角形ABC中,∠ACB=90°,AB=8,點(diǎn)E是AB的中點(diǎn),以AE為邊作等邊△ADE(點(diǎn)D與點(diǎn)C分別在AB異側(cè)),連接CD,則△ACD的面積是_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,直線AB與x軸、y軸分別相交于點(diǎn)A、B,將線段AB繞點(diǎn)A順時針旋轉(zhuǎn)90°,得到AC,連接BC,將△ABC沿射線BA平移,當(dāng)點(diǎn)C到達(dá)x軸時運(yùn)動停止.設(shè)平移距離為m,平移后的圖形在x軸下方部分的面積為S,S關(guān)于m的函數(shù)圖象如圖2所示(其中0<m≤a,a<m≤b時,函數(shù)的解析式不同).
(1)填空:△ABC的面積為 ;
(2)求直線AB的解析式;
(3)求S關(guān)于m的解析式,并寫出m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長為1個單位長度的小正方形組成的網(wǎng)格中,給出了格點(diǎn)(頂點(diǎn)是網(wǎng)格線的交點(diǎn))和直線l及點(diǎn)O.
(1)畫出關(guān)于直線l對稱的;
(2)連接OA,將OA繞點(diǎn)O順時針旋轉(zhuǎn),畫出旋轉(zhuǎn)后的線段;
(3)在旋轉(zhuǎn)過程中,當(dāng)OA與有交點(diǎn)時,旋轉(zhuǎn)角的取值范圍為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人相約周末登花果山,甲、乙兩人距地面的高度y(米)與登山時間x(分)之間的函數(shù)圖象如圖所示,根據(jù)圖象所提供的信息解答下列問題:
(1)甲登山上升的速度是每分鐘 米,乙在A地時距地面的高度b為 米.
(2)若乙提速后,乙的登山上升速度是甲登山上升速度的3倍,請求出乙登山全程中,距地面的高度y(米)與登山時間x(分)之間的函數(shù)關(guān)系式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com