【題目】如圖,在△ABC中,AB=AC,∠A=30°,以AB為直徑的⊙O交BC于點D,交AC于點E,連結(jié)DE,過點B作BP平行于DE,交⊙O于點P,連結(jié)EP、CP、OP.
(1)BD=DC嗎?說明理由;
(2)求∠BOP的度數(shù);
(3)求證:CP是⊙O的切線.
【答案】(1)BD=DC;理由見解析;(2)90°;(3)證明見解析;
【解析】
(1)連接AD,由圓周角定理可知∠ADB=90°,再由AB=AC可知△ABC是等腰三角形,故BD=DC;
(2)由于AD是等腰三角形ABC底邊上的中線,所以∠BAD=∠CAD,故=,進(jìn)而可得出BD=DE,故BD=DE=DC,所以∠DEC=∠DCE,△ABC中由等腰三角形的性質(zhì)可得出∠ABC=75°,故∠DEC=75°由三角形內(nèi)角和定理得出∠EDC的度數(shù),再根據(jù)BP∥DE可知∠PBC=∠EDC=30°,進(jìn)而得出∠ABP的度數(shù),再由OB=OP,可知∠OBP=∠OPB,由三角形內(nèi)角和定理即可得出∠BOP=90°;
(3)設(shè)OP交AC于點G,由∠BOP=90°可知∠AOG=90°在Rt△AOG中,由∠OAG=30°,可知=,由于==,所以=,=,再根據(jù)∠AGO=∠CGP可得出△AOG∽△CPG,由相似三角形形的性質(zhì)可知∠GPC=∠AOG=90°,故可得出CP是 ⊙O的切線.
解:(1)BD=DC.理由如下:連接AD,
∵AB是直徑,
∴∠ADB=90°,
∴AD⊥BC,
∵AB=AC,
∴BD=DC;
(2)∵AD是等腰△ABC底邊上的中線,
∴∠BAD=∠CAD,
∴=,
∴BD=DE.
∴BD=DE=DC,
∴∠DEC=∠DCE,
△ABC中,AB=AC,∠A=30°,
∴∠DCE=∠ABC=(180°﹣30°)=75°,
∴∠DEC=75°,
∴∠EDC=180°﹣75°﹣75°=30°,
∵BP∥DE,
∴∠PBC=∠EDC=30°,
∴∠ABP=∠ABC﹣∠PBC=75°﹣30°=45°,
∵OB=OP,
∴∠OBP=∠OPB=45°,
∴∠BOP=90°;
(3)設(shè)OP交AC于點G,如圖,則∠AOG=∠BOP=90°,
在Rt△AOG中,∠OAG=30°,
∴=,
又∵==,
∴=,
∴=,
又∵∠AGO=∠CGP,
∴△AOG∽△CPG,
∴∠GPC=∠AOG=90°,
∴OP⊥PC,
∴CP是⊙O的切線;
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,O為坐標(biāo)原點,點A(0,1),點C(1,0),正方形AOCD的兩條對角線的交點為B,延長BD至點G,使DG=BD,延長BC至點E,使CE=BC,以BG,BE為鄰邊作正方形BEFG.
(Ⅰ)如圖①,求OD的長及的值;
(Ⅱ)如圖②,正方形AOCD固定,將正方形BEFG繞點B逆時針旋轉(zhuǎn),得正方形BE′F′G′,記旋轉(zhuǎn)角為α(0°<α<360°),連接AG′.
①在旋轉(zhuǎn)過程中,當(dāng)∠BAG′=90°時,求α的大;
②在旋轉(zhuǎn)過程中,求AF′的長取最大值時,點F′的坐標(biāo)及此時α的大。ㄖ苯訉懗鼋Y(jié)果即可).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在△ABC中,∠ACB=90°,BC=2,∠A=30°,點E,F分別是線段BC,AC的中點,連結(jié)EF.
(1)線段BE與AF的位置關(guān)系是 ,= .
(2)如圖2,當(dāng)△CEF繞點C順時針旋轉(zhuǎn)a時(0°<a<180°),連結(jié)AF,BE,(1)中的結(jié)論是否仍然成立.如果成立,請證明;如果不成立,請說明理由.
(3)如圖3,當(dāng)△CEF繞點C順時針旋轉(zhuǎn)a時(0°<a<180°),延長FC交AB于點D,如果AD=6﹣2,求旋轉(zhuǎn)角a的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①、圖②,方格紙中的每個小正方形的邊長均為1,小正方形的頂點稱為格點,圖①和圖②中的點A、點B都是格點.分別在圖①、圖②中畫出格點C,并滿足下面的條件:
(1)在圖①中,使∠ABC=90°.此時AC的長度是 .
(2)在圖②中,使AB=AC.此時△ABC的邊AB上的高是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是半圓O的直徑,C是半圓O上的一點,CF切半圓O于點C,BD⊥CF于為點D,BD與半圓O交于點E.
(1)求證:BC平分∠ABD.
(2)若DC=8,BE=4,求圓的直徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列函數(shù)中,y關(guān)于x的二次函數(shù)是( )
A. y=ax2+bx+c B. y=x(x﹣1)
C. y= D. y=(x﹣1)2﹣x2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰△ABC中,AB=AC,∠BAC=50°.∠BAC的平分線與AB的中垂線交于點O,點C沿EF折疊后與點O重合,則∠CEF的度數(shù)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,AB⊥BC,點E在AB上,∠DEC=90°.
(1)求證:△ADE∽△BEC.
(2)若AD=1,BC=3,AE=2,求AB的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC中,∠B=90 ,AB=16cm,BC=12cm,P、Q是△ABC邊上的兩個動點,其中點P從點A開始沿A→B方向運動,且速度為每秒1cm,點Q從點B開始沿B→C→A方向運動,且速度為每秒2cm,它們同時出發(fā),設(shè)出發(fā)的時間為t秒.
(1)出發(fā)2秒后,求PQ的長;
(2)當(dāng)點Q在邊BC上運動時,出發(fā)幾秒鐘后,△PQB能形成等腰三角形?
(3)當(dāng)點Q在邊CA上運動時,求能使△BCQ成為等腰三角形的運動時間.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com