【題目】在中,,,點(diǎn)從點(diǎn)出發(fā)沿射線(xiàn)移動(dòng),同時(shí)點(diǎn)從點(diǎn)出發(fā)沿線(xiàn)段的延長(zhǎng)線(xiàn)移動(dòng),點(diǎn),移動(dòng)的速度相同,與相交于點(diǎn).
(1)如圖1,過(guò)點(diǎn)作,交于點(diǎn),求證:;
(2)如圖2,,當(dāng)點(diǎn)移動(dòng)到的中點(diǎn)時(shí),求的長(zhǎng)度;
(3)如圖3,過(guò)點(diǎn)作于點(diǎn).在點(diǎn)從點(diǎn)向點(diǎn)(點(diǎn)不與點(diǎn),重合)移動(dòng)的過(guò)程中,線(xiàn)段與的長(zhǎng)度是否保持不變?nèi)舯3植蛔,?qǐng)求出與的長(zhǎng)度和;若改變,請(qǐng)說(shuō)明理由.
【答案】(1)證明見(jiàn)解析;(2)的長(zhǎng)度為;(3)與的長(zhǎng)度和保持不變,和為4.
【解析】
(1)由平行的性質(zhì)和等腰三角形的性質(zhì)進(jìn)行等邊和等角轉(zhuǎn)換,即可判定;
(2)由(1)的結(jié)論和等邊三角形的性質(zhì),通過(guò)等量轉(zhuǎn)換即可得解;
(3)首先過(guò)點(diǎn)作,由等腰三角形的性質(zhì)以及全等三角形的性質(zhì),即可求得與的長(zhǎng)度保持不變.
(1)∵點(diǎn),同時(shí)移動(dòng)且移動(dòng)的速度相同,
,
,
又,
,,
,
,
.
與相交于點(diǎn),
,
在和中,,
(AAS);
(2)過(guò)點(diǎn)作,交于點(diǎn),如圖所示:
,,
是等邊三角形,
,
,
是等邊三角形,
.
是的中點(diǎn),
,
.
由(1)易得,
,
,
的長(zhǎng)度為;
(3)保持不變;
過(guò)點(diǎn)作,交于點(diǎn),如圖所示:
由(1)易得,,
,是等腰三角形.
,
是的中線(xiàn),
,
,
與的長(zhǎng)度和保持不變.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩人相約周末登花果山,甲、乙兩人距地面的高度(米)與登山時(shí)間(分)之間的函數(shù)圖象如圖所示,根據(jù)圖象所提供的信息解答下列問(wèn)題:
(1)甲登山上升的速度是每分鐘 米,乙在地時(shí)距地面的高度為 米;
(2)若乙提速后,乙的登山上升速度是甲登山上升速度的3倍,請(qǐng)求出乙登山全程中,距地面的高度(米)與登山時(shí)間(分)之間的函數(shù)關(guān)系式.
(3)登山多長(zhǎng)時(shí)間時(shí),甲、乙兩人距地面的高度差為50米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,弦AD平分∠BAC,DE⊥AC交AC的延長(zhǎng)線(xiàn)于點(diǎn)E.
(1)求證:DE是⊙O的切線(xiàn);
(2)若AD=BC,⊙O半徑為6,求∠CAD與圍成的陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商店經(jīng)銷(xiāo)一種成本為每千克元的水產(chǎn)品,據(jù)市場(chǎng)分析,若按每千克元銷(xiāo)售,一個(gè)月能售出,銷(xiāo)售單價(jià)每漲(或跌)元,月銷(xiāo)售量就減少(或增加),解答以下問(wèn)題:
(1)當(dāng)銷(xiāo)售單價(jià)定位每千克元時(shí),計(jì)算月銷(xiāo)售量和月銷(xiāo)售利潤(rùn);
(2)商店想在月銷(xiāo)售成本不超過(guò)元的情況下,使得月銷(xiāo)售利潤(rùn)達(dá)到元,銷(xiāo)售單價(jià)應(yīng)為多少?
(3)商店要使得月銷(xiāo)售利潤(rùn)達(dá)到最大,銷(xiāo)售單價(jià)應(yīng)為多少?此時(shí)利潤(rùn)為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義[a,b,c]為函數(shù)y=ax2+bx+c的特征數(shù),下面給出特征數(shù)為[2m,1﹣m,﹣1﹣m]的函數(shù)的一些結(jié)論,其中不正確的是( 。
A. 當(dāng)m=﹣3時(shí),函數(shù)圖象的頂點(diǎn)坐標(biāo)是(,)
B. 當(dāng)m>0時(shí),函數(shù)圖象截x軸所得的線(xiàn)段長(zhǎng)度大于
C. 當(dāng)m≠0時(shí),函數(shù)圖象經(jīng)過(guò)同一個(gè)點(diǎn)
D. 當(dāng)m<0時(shí),函數(shù)在x>時(shí),y隨x的增大而減小
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)如圖1,△ACB和△DCE均為等邊三角形,點(diǎn)A,D,E在同一直線(xiàn)上,連接BE,則∠AEB的度數(shù)為__________.
(2)如圖2,△ACB和△DCE均為等腰直角三角形,∠ACB=∠DCE=90°,點(diǎn)A,D,E在同一直線(xiàn)上,CM為△DCE中DE邊上的高,連接BE.求∠AEB的度數(shù)及線(xiàn)段CM,AE,BE之間的數(shù)量關(guān)系,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市某樓盤(pán)準(zhǔn)備以每平方米6000元的均價(jià)對(duì)外銷(xiāo)售,由于國(guó)務(wù)院有關(guān)房地產(chǎn)的新政策出臺(tái)后,購(gòu)房者持幣觀望,為了加快資金周轉(zhuǎn),房地產(chǎn)開(kāi)發(fā)商對(duì)價(jià)格經(jīng)過(guò)兩次下調(diào)后,決定以每平方米4860元的均價(jià)開(kāi)盤(pán)銷(xiāo)售.
(1)求平均每次下調(diào)的百分率;
(2)某人準(zhǔn)備以開(kāi)盤(pán)均價(jià)購(gòu)買(mǎi)一套100平方米的房子,開(kāi)發(fā)商給予以下兩種優(yōu)惠方案供其選擇:①打9.8折銷(xiāo)售;②不打折,送兩年物業(yè)管理費(fèi).物業(yè)管理費(fèi)每平方米每月1.5元,請(qǐng)問(wèn)哪種方案更優(yōu)惠?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC是等邊三角形,△BDC是頂角∠BDC=120°的等腰三角形,M是AB延長(zhǎng)線(xiàn)上一點(diǎn),N是CA延長(zhǎng)線(xiàn)上一點(diǎn),且∠MDN=60°.試探BM,MN,CN之間的數(shù)量關(guān)系,并給出證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)如圖1,結(jié)合函數(shù)的圖象填空:隨的增大而___________,當(dāng)時(shí),該函數(shù)的最大值為_________,最小值為_________.
(2)根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn)來(lái)探究函數(shù)的最小值.
①若點(diǎn)和點(diǎn)是該函數(shù)圖象上的兩點(diǎn),則_________;
②在平面直角坐標(biāo)系中描出以上表中各對(duì)對(duì)應(yīng)值為坐標(biāo)的點(diǎn),并根據(jù)描出的點(diǎn),畫(huà)出該函數(shù)的圖象;
③由圖象可知,函數(shù)的最小值為___________.
(3)請(qǐng)結(jié)合的取值范圍判斷方程的解的個(gè)數(shù).(直接寫(xiě)出結(jié)果)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com