【題目】畫圖題:

1)在如圖所示的方格紙中,經(jīng)過(guò)線段AB外一點(diǎn)C,不用量角器與三角尺,僅用直尺,畫線段AB的垂線CE和平行線CH

2)判斷CE、CH的位置關(guān)系是   

3)連接ACBC,若小正方形的邊長(zhǎng)為a,求三角形ABC的面積.(用含a的代數(shù)式表示).

【答案】1)答案見解析;(2CECH;(3a2

【解析】

1)根據(jù)正方形的性質(zhì),在網(wǎng)格圖中找和點(diǎn)C是對(duì)角線的點(diǎn)E,連接CE就是AB的垂線,根據(jù)對(duì)稱性找到點(diǎn)H,連接CH即是所求;

2)根據(jù)(1)中作圖的方法,結(jié)合平行的性質(zhì),可以得出CECH;

3)根據(jù)割補(bǔ)法,三角形ABC的面積看成正方形的面積減去三個(gè)直角三角形的面積即可.

解:(1)如圖,根據(jù)正方形的性質(zhì),找到點(diǎn)E連接CE即為所求作的AB的垂線,利用對(duì)稱性找到點(diǎn)H,連接CH即為所求AB的平行線;

2)∵CEAB,CHAB

∴∠ECH=90°,

CHCE

CE、CH的位置關(guān)系是CECH

故答案為:CECH

3)如圖,連接ACBC

∵小方格的邊長(zhǎng)為a,則三角形ABC的面積為

=16a2×3a2×a×4a=a2

故答案為:a2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】矩形ABCD中,AB6,BC8,點(diǎn)EBC邊上一點(diǎn),連接DE,把△DCE沿DE折疊,使點(diǎn)C落在點(diǎn)C′處,當(dāng)△BEC′為直角三角形時(shí),BE的長(zhǎng)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平行四邊形中,分別是的平分線,若添加以下一個(gè)條件,仍無(wú)法判斷四邊形為菱形,則這個(gè)條件是(

A.B.

C.D.的平分線

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了發(fā)展學(xué)生的核心素養(yǎng),培養(yǎng)學(xué)生的綜合能力,某中學(xué)利用陽(yáng)光大課間,組織學(xué)生積極參加豐富多彩的課外活動(dòng),學(xué)校成立了舞蹈隊(duì)、足球隊(duì)、籃球隊(duì)、毽子隊(duì)、射擊隊(duì)等,其中射擊隊(duì)在某次訓(xùn)練中,甲、乙兩名隊(duì)員各射擊10發(fā)子彈,成績(jī)用下面的折線統(tǒng)計(jì)圖表示:(甲為實(shí)線,乙為虛線)

(1)依據(jù)折線統(tǒng)計(jì)圖,得到下面的表格:

射擊次序(次)

1

2

3

4

5

6

7

8

9

10

甲的成績(jī)(環(huán))

8

9

7

9

8

6

7

10

8

乙的成績(jī)(環(huán))

6

7

9

7

9

10

8

7

10

其中________,________;

(2)甲成績(jī)的眾數(shù)是________環(huán),乙成績(jī)的中位數(shù)是________環(huán);

(3)請(qǐng)運(yùn)用方差的知識(shí),判斷甲、乙兩人誰(shuí)的成績(jī)更為穩(wěn)定?

(4)該校射擊隊(duì)要參加市組織的射擊比賽,已預(yù)選出2名男同學(xué)和2名女同學(xué),現(xiàn)要從這4名同學(xué)中任意選取2名同學(xué)參加比賽,請(qǐng)用列表或畫樹狀圖法,求出恰好選到11女的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】2018年,廣州國(guó)際龍舟邀請(qǐng)賽于623日在中山大學(xué)北門廣場(chǎng)至廣州大橋之間的珠江河段舉行.上午8時(shí),參賽龍舟同時(shí)出發(fā),甲、乙兩隊(duì)在比賽中,路程y(千米)與時(shí)間x(小時(shí))的函數(shù)關(guān)系如圖所示,甲隊(duì)在上午11時(shí)30分到達(dá)終點(diǎn).

1)在比賽過(guò)程中,乙隊(duì)何時(shí)追上甲隊(duì)?

2)在比賽過(guò)程中,甲、乙兩隊(duì)何時(shí)相距最遠(yuǎn)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,BCOA,BC=3,OA=6,AB=3

(1)直接寫出點(diǎn)B的坐標(biāo)

(2)已知D.E分別為線段OC.OB上的點(diǎn),OD=5,OE=2BE,直線DEx軸于點(diǎn)F,求直線DE的解析式

(3)在(2)的條件下,點(diǎn)M是直線DE上的一點(diǎn),在x軸上方是否存在另一個(gè)點(diǎn)N,使以O.D.M.N為頂點(diǎn)的四邊形是菱形?若存在,請(qǐng)直接寫出點(diǎn)N的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】有一項(xiàng)工程,乙隊(duì)單獨(dú)完成所需的時(shí)間是甲隊(duì)單獨(dú)完成所需時(shí)間的2倍,若兩隊(duì)合作4天后,剩下的工作甲單獨(dú)做還需要6天完成.

1)求甲、乙兩隊(duì)單獨(dú)完成這項(xiàng)工程各需多少天;

2)若甲隊(duì)每天的報(bào)酬是1萬(wàn)元,乙隊(duì)每天的報(bào)酬是0.3萬(wàn)元,要使完成這項(xiàng)工程時(shí)的總報(bào)酬不超過(guò)9.6萬(wàn)元,甲隊(duì)最多可以工作多少天?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)為豐富學(xué)生的校園生活,準(zhǔn)備從體育用品商店一次性購(gòu)買若干個(gè)籃球和足球(每個(gè)籃球的價(jià)格相同,每個(gè)足球的價(jià)格也相同).若購(gòu)買個(gè)籃球和個(gè)足球共需元,購(gòu)買個(gè)籃球和個(gè)足球共需元.

1)購(gòu)買一個(gè)籃球、一個(gè)足球各需多少元?

2)根據(jù)該中學(xué)的實(shí)際情況,需從體育用品商店一次性購(gòu)買籃球和足球共個(gè).要求購(gòu)買總金額不能超過(guò)元,則最多能購(gòu)買多少個(gè)籃球?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知一副直角三角板如圖放置,其中BC6,EF8,把30°的三角板向右平移,使頂點(diǎn)B落在45°的三角板的斜邊DF上,則兩個(gè)三角板重疊部分(陰影部分)的面積為_____

查看答案和解析>>

同步練習(xí)冊(cè)答案