【題目】如圖,在矩形紙片ABCD中,AB=6,BC=8.把△BCD沿對角線BD折疊,使點C落在C′處,BC′交AD于點G;E、F分別是C′D和BD上的點,線段EF交AD于點H,把△FDE沿EF折疊,使點D落在D′處,點D′恰好與點A重合.
(1)求證:△ABG≌△C′DG;
(2)求tan∠ABG的值;
(3)求EF的長.
【答案】(1)根據翻折變換的性質可知∠C=∠BAG=90°,C′D=AB=CD,∠AGB=∠DGC′,故可得出結論;(2);(3)
【解析】試題分析:(1)根據翻折變換的性質可知∠C=∠BAG=90°,C′D=AB=CD,∠AGB=∠DGC′,故可得出結論;
(2)由(1)可知GD=GB,故AG+GB=AD,設AG=x,則GB=8-x,在Rt△ABG中利用勾股定理即可求出AG的長,進而得出tan∠ABG的值;
(3)由△AEF是△DEF翻折而成可知EF垂直平分AD,故HD=AD=4,再根據tan∠ABG即可得出EH的長,同理可得HF是△ABD的中位線,故可得出HF的長,由EF=EH+HF即可得出結論.
試題解析:(1)∵△BDC′由△BDC翻折而成,
∴∠C=∠BAG=90°,C′D=AB=CD,∠AGB=∠DGC′,
∴∠ABG=∠ADE,
在△ABG與△C′DG中,
∵,
∴△ABG≌△C′DG(AAS);
(2)∵由(1)可知△ABG≌△C′DG,
∴GD=GB,
∴AG+GB=AD,
設AG=x,則GB=8-x,
在Rt△ABG中,
∵AB2+AG2=BG2,
即62+x2=(8-x)2,
解得x=,
∴tan∠ABG=;
(3)∵△AEF是△DEF翻折而成,
∴EF垂直平分AD,
∴HD=AD=4,
∴tan∠ABG=tan∠ADE=,
∴EH=HD×=4×=,
∵EF垂直平分AD,AB⊥AD,
∴HF是△ABD的中位線,
∴HF=AB=×6=3,
∴EF=EH+HF=+3=.
科目:初中數學 來源: 題型:
【題目】為迎接國慶60周年,某校舉行以“祖國成長我成長”為主題的圖片制作比賽,賽后整理參賽同學的成績,并制作成圖表如下:
分數段 | 頻數 | 頻率 |
60≤x<70 | 30 | 0.15 |
70≤x<80 | m | 0.45 |
80≤x<90 | 60 | n |
90≤x<100 | 20 | 0.1 |
請根據以上圖表提供的信息,解答下列問題:
(1)表中m和n所表示的數分別為:m= ,n= ;
(2)請在圖中,補全頻數分布直方圖;
(3)比賽成績的中位數落在哪個分數段;
(4)如果比賽成績80分以上(含80分)可以獲得獎勵,那么獲獎率是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】中央電視臺的“中國詩詞大賽”節(jié)目文化品位高,內容豐富,某校初二年級模擬開展“中國詩詞大賽”比賽,對全年級同學成績進行統計后分為“優(yōu)秀”、“良好”、“一般”、“較差”四個等級,并根據成績繪制成如下兩幅不完整的統計圖,請結合統計圖中的信息,回答下列問題:
(1)扇形統計圖中“優(yōu)秀”所對應的扇形的圓心角為 度,并將條形統計圖補充完整.
(2)此次比賽有四名同學活動滿分,分別是甲、乙、丙、丁,現從這四名同學中挑選兩名同學參加學校舉行的“中國詩詞大賽”比賽,請用列表法或畫樹狀圖法,求出選中的兩名同學恰好是甲、丁的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】小王家新買的一套住房的建筑平面圖如圖所示(單位:米).
(1)這套住房的建筑總面積是多少平方米?(用含a,b,c的式子表示)
(2)若a=10,b=4,c=7,試求出小王家這套住房的具體面積.
(3)地面裝修要鋪設瓷磚,公司報價是:客廳地面每平方米240元,臥室地面每平方米220元,廚房地面每平方米180元,衛(wèi)生間地面每平方米150元.在(2)的條件下,小王一共要花多少錢?
(4)這套住房的售價為每平方米15000元,購房時首付款為房價的40%,余款向銀行申請貸款,在(2)的條件下,小王家購買這套住房時向銀行申請貸款的金額是多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知如圖,四邊形OABC為菱形,A點的坐標為,對角線OB、AC相交于D點,雙曲線經過D點,交BC的延長線于E點,且,則E點的坐標是
A. B. C. D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖是本地區(qū)一種產品30天的銷售圖像,圖1是產品銷售量y(件)與時間t(天)的函數關系,圖2是一件產品的銷售利潤z(元)與時間t(天)的函數關系,已知日銷售利潤=日銷售量×每件產品的銷售利潤,下列結論錯誤的是( )。
A. 第24天的銷售量為200件B. 第10天銷售一件產品的利潤是15元
C. 第12天與第30天這兩天的日銷售利潤相等D. 第30天的日銷售利潤是750元
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,小明有5張寫著不同數字的卡片,請你按要求抽出卡片,完成下列各題:
(1)若從中抽出2張卡片,且這2個數字的差最小,應如何抽?最小值是多少?
(2)若從中抽出2張卡片,且這2個數字的積最大,應如何抽取?最小值是多少?
(3)若從中抽出4張卡片,運用加、減、乘、除、乘方、括號等運算符號,使得結果為24.請寫出運算式.(只需寫出一種)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點E是平行四邊形ABCD的邊BC的中點,連接AE并延長交DC的延長線于點F,連接AC、BF,∠AEC=2∠ABC;(1)求證:四邊形ABFC是矩形;(2)在(1)的條件下,若△AFD是等邊三角形,且邊長為4,求四邊形ABFC的面積。
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com