已知:如圖,AB為⊙O的直徑,PA、PC是⊙O的切線,A、C為切點(diǎn),∠BAC=30°.
(1)求∠P的大。
(2)若AB=6,求PA的長(zhǎng).
(1)∵PA是⊙O的切線,AB為⊙O的直徑,
∴PA⊥AB,即∠PAB=90°.
∵∠BAC=30°,
∴∠PAC=90°-30°=60°.
又∵PA、PC切⊙O于點(diǎn)A、C,
∴PA=PC,
∴△PAC是等邊三角形,
∴∠P=60°.
(2)如圖,連結(jié)BC.
∵AB是直徑,∠ACB=90°,
∴在Rt△ACB中,AB=6,∠BAC=30°,
可得AC=ABcos∠BAC=6×cos30°=3
3

又∵△PAC是等邊三角形,
∴PA=AC=3
3
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,在Rt△ABC中,∠C=90°,∠A=60°,BC=4cm,以點(diǎn)C為圓心,以3cm長(zhǎng)為半徑作圓,則⊙C與AB的位置關(guān)系是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,PD切⊙O于A,
AB
=2
BC
,∠CAP=120°,則∠DAB=______度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖所示,在Rt△ABC中,∠C=90°,AC=6,sinB=
3
5
,若以C為圓心,R為半徑所得的圓與斜邊AB只有一個(gè)公共點(diǎn),則R的取值范圍是( 。
A.R=4.8B.R=4.8或6≤R≤8
C.R=4.8或6≤R<8D.R=4.8或6<R≤8

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,矩形ABCD,AD=8,DC=6,在對(duì)角線AC上取一點(diǎn)O,以O(shè)C為半徑的圓切AD于E,交BC于F,交CD于G.
(1)求⊙O的半徑R;
(2)設(shè)∠BFE=α,∠CED=β,請(qǐng)寫(xiě)出α,β,90°三者之間的關(guān)系式(只需寫(xiě)出一個(gè))并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,⊙O的半徑為6cm,經(jīng)過(guò)⊙O上一點(diǎn)C作⊙O的切線交半徑OA的延長(zhǎng)于點(diǎn)B,作∠ACO的平分線交⊙O于點(diǎn)D,交OA于點(diǎn)F,延長(zhǎng)DA交BC于點(diǎn)E.
(1)求證:ACOD;
(2)如果DE⊥BC,求
AC
的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,P是⊙O外一點(diǎn),PA是⊙O的切線,PO=26cm,PA=24cm,則⊙O的周長(zhǎng)為(  )
A.18πcmB.16πcmC.20πcmD.24πcm

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知:如圖,在銳角∠MAN的邊AN上取一點(diǎn)B,以AB為直徑的半圓O交AM于C,交∠MAN的角平分線于E,過(guò)點(diǎn)E作ED⊥AM,垂足為D,反向延長(zhǎng)ED交AN于F.
(1)猜想ED與⊙O的位置關(guān)系,并說(shuō)明理由;
(2)若cos∠MAN=
1
2
,AE=
3
,求陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,圓O的半徑OA與OB互相垂直,P是線段OB延長(zhǎng)線上的一動(dòng)點(diǎn),線段AP交圓O于點(diǎn)D,過(guò)D點(diǎn)作圓O的切線交OP于點(diǎn)E.
(1)觀察圖形,點(diǎn)P在移動(dòng)過(guò)程中比較DE與EP的大小關(guān)系,并對(duì)你的結(jié)論加以證明;
(2)作DH⊥OP于點(diǎn)H,若HE=6,DE=4
3
,求圓O半徑的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案