在直角坐標(biāo)系內(nèi),將坐標(biāo)為(1,1),(2,1),(2,2),(1,2),(1,3),(2,3)的點依次連結(jié)起來,組成一個圖形.

(1)每個點的縱坐標(biāo)不變,橫坐標(biāo)乘以2,再將所得的各個點用線段依次連結(jié)起來,所得的圖案與原圖案相比有什么變化?

(2)橫坐標(biāo)不變,縱坐標(biāo)加3呢?

(3)橫坐標(biāo)、縱坐標(biāo)均乘以-1呢?

(4)橫坐標(biāo)不變,縱坐標(biāo)乘以-1呢?

答案:略
解析:

(1)所得的圖形被橫向拉長了一倍;

(2)所得的圖形向y軸正方向平移了3單位;

(3)所得的圖形與原圖形關(guān)于原點對稱;

(4)所得的圖形與原圖形關(guān)于x軸對稱.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,△ABC的頂點坐標(biāo)是A(-2,3),B(-4,-1),C(2,0).點P(m,n)為△ABC內(nèi)一點,平移△ABC得到△A1B1C1,使點A1(2,-3).
(1)請直接寫出點B1,C1的坐標(biāo);
(2)將△ABC繞坐標(biāo)點C順時針旋轉(zhuǎn)90°得到△A2B2C,畫出△A2B2C;
(3)直接寫出(1)中平移時,線段AB掃過的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•武漢模擬)在平面直角坐標(biāo)系中,△ABC的頂點坐標(biāo)是A(-2,3),B(-4,-1),C(2,0).點P(m,n)為△ABC內(nèi)一點,平移△ABC得到△A1B1C1,使點P(m,n)移到P(m+6,n+1)處.
(1)請直接寫出點A1,B1,C1的坐標(biāo);
(2)將△ABC繞坐標(biāo)點C逆時針旋轉(zhuǎn)90°得到△A2B2C,畫出△A2B2C;
(3)直接寫出△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

在平面直角坐標(biāo)系中,△ABC的頂點坐標(biāo)是A(-2,3),B(-4,-1),C(2,0).點P(m,n)為△ABC內(nèi)一點,平移△ABC得到△A1B1C1,使點P(m,n)移到P(m+6,n+1)處.
(1)請直接寫出點A1,B1,C1的坐標(biāo);
(2)將△ABC繞坐標(biāo)點C逆時針旋轉(zhuǎn)90°得到△A2B2C,畫出△A2B2C;
(3)直接寫出△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年湖北省武漢市四月調(diào)考九年級數(shù)學(xué)試卷(解析版) 題型:解答題

在平面直角坐標(biāo)系中,△ABC的頂點坐標(biāo)是A(-2,3),B(-4,-1),C(2,0).點P(m,n)為△ABC內(nèi)一點,平移△ABC得到△A1B1C1,使點P(m,n)移到P(m+6,n+1)處.
(1)請直接寫出點A1,B1,C1的坐標(biāo);
(2)將△ABC繞坐標(biāo)點C逆時針旋轉(zhuǎn)90°得到△A2B2C,畫出△A2B2C;
(3)直接寫出△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年湖北省武漢市中考數(shù)學(xué)模擬試卷(四)(解析版) 題型:解答題

在平面直角坐標(biāo)系中,△ABC的頂點坐標(biāo)是A(-2,3),B(-4,-1),C(2,0).點P(m,n)為△ABC內(nèi)一點,平移△ABC得到△A1B1C1,使點A1(2,-3).
(1)請直接寫出點B1,C1的坐標(biāo);
(2)將△ABC繞坐標(biāo)點C順時針旋轉(zhuǎn)90°得到△A2B2C,畫出△A2B2C;
(3)直接寫出(1)中平移時,線段AB掃過的面積.

查看答案和解析>>

同步練習(xí)冊答案