【題目】如圖,已知等邊三角形ABC的邊長為7,點(diǎn)DAB上一點(diǎn),點(diǎn)EBC的延長線上,且CE=AD,連接DEAC于點(diǎn)F,作DHAC于點(diǎn)H,則線段HF的長為 ____________.

【答案】

【解析】

證明:(1)過點(diǎn)DDGBCAC于點(diǎn)G

∴∠ADG=B,∠AGD=ACB,∠FDG=E,

∵△ABC是等邊三角形,

AB=AC,∠B=ACB=A=60°,

∴∠A=ADG=AGD=60°

∴△ADG是等邊三角形,

AD=DG

AD=CE,

DG=CE,

DFGEFC

∴△DFG≌△EFCAAS),

GF=FC=GC

又∵DHAC,

AH=HG=AG

HF=HG+GF=AG+GC=AC=

故答案為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形網(wǎng)格中的每個(gè)小正方形的邊長都是1每個(gè)小格的頂點(diǎn)叫做格點(diǎn)

1在圖1中以格點(diǎn)為頂點(diǎn)畫一個(gè)面積為5的正方形;

2在圖2中以格點(diǎn)為頂點(diǎn)畫一個(gè)三角形,使三角形三邊長分別為2、、

3如圖3,A、B、C是小正方形的頂點(diǎn)ABC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一列快車由甲地開往乙地,一列慢車由乙地開往甲地,兩車同時(shí)出發(fā),勻速運(yùn)動(dòng).快車離乙地的路程y1km)與行駛的時(shí)間xh)之間的函數(shù)關(guān)系,如圖中線段AB所示,慢車離乙地的路程y2km)與行駛的時(shí)間xh)之間的函數(shù)關(guān)系,如圖中線段OC所示,根據(jù)圖像進(jìn)行以下研究:

1)甲、乙兩地之間的距離為  km;線段AB的解析式為  ;線段OC的解析式為   ;

2)經(jīng)過多長時(shí)間,快慢車相距50千米?

3)設(shè)快、慢車之間的距離為ykm),并畫出函數(shù)的大致圖像.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,ABAC,且ABC60°,DABC內(nèi)一點(diǎn) ,且DADB,EABC外一點(diǎn),BEAB,且EBDCBD,連DECE. 下列結(jié)論:①DACDBC;②BEAC ;③DEB30°. 其中正確的是(

A....B.①③...C. ...D.①②③

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】京廣高速鐵路工程指揮部,要對某路段工程進(jìn)行招標(biāo),接到了甲、乙兩個(gè)工程隊(duì)的投標(biāo)書.從投標(biāo)書中得知:甲隊(duì)單獨(dú)完成這項(xiàng)工程所需天數(shù)是乙隊(duì)單獨(dú)完成這項(xiàng)工程所需天數(shù)的;若由甲隊(duì)先做10天,剩下的工程再由甲、乙兩隊(duì)合作30天完成.

(1)求甲、乙兩隊(duì)單獨(dú)完成這項(xiàng)工程各需多少天?

(2)已知甲隊(duì)每天的施工費(fèi)用為8.4萬元,乙隊(duì)每天的施工費(fèi)用為5.6萬元.工程預(yù)算的施工費(fèi)用為500萬元.為縮短工期并高效完成工程,擬安排預(yù)算的施工費(fèi)用是否夠用?若不夠用,需追加預(yù)算多少萬元?請給出你的判斷并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠ABC=45°F是高ADBE的交點(diǎn),CD=4,則線段DF的長為(

A.4B.5C.6D.8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在等邊△ABC中.

1)如圖1,PQBC邊上兩點(diǎn),AP=AQ,∠BAP=20°,求∠AQB的度數(shù);

2)點(diǎn)PQBC邊上的兩個(gè)動(dòng)點(diǎn)(不與B,C重合),點(diǎn)P在點(diǎn)Q的左側(cè),且AP=AQ,點(diǎn)Q關(guān)于直線AC的對稱點(diǎn)為M,連接AMPM

①依題意將圖2補(bǔ)全;

②求證:PA=PM

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+3經(jīng)過點(diǎn) B﹣1,0),C2,3),拋物線與y軸的焦點(diǎn)A,與x軸的另一個(gè)焦點(diǎn)為D,點(diǎn)M為線段AD上的一動(dòng)點(diǎn),設(shè)點(diǎn)M的橫坐標(biāo)為t

1)求拋物線的表達(dá)式;

2)過點(diǎn)My軸的平行線,交拋物線于點(diǎn)P,設(shè)線段PM的長為1,當(dāng)t為何值時(shí),1的長最大,并求最大值;(先根據(jù)題目畫圖,再計(jì)算)

3)在(2)的條件下,當(dāng)t為何值時(shí),△PAD的面積最大?并求最大值;

4)在(2)的條件下,是否存在點(diǎn)P,使△PAD為直角三角形?若存在,直接寫出t的值;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將一塊長方形紙片ABCD沿BD翻折后,點(diǎn)CE重合,若∠ADB30°EH2cm,則BC的長度為( 。cm

A.8B.7C.6D.5

查看答案和解析>>

同步練習(xí)冊答案