【題目】如圖,四邊形ABCD是平行四邊形,E、F是對(duì)角線AC上的兩點(diǎn),∠1=∠2.
(1)求證:AE=CF;
(2)求證:四邊形EBFD是平行四邊形.
【答案】(1)證明見(jiàn)解析;(2)證明見(jiàn)解析.
【解析】(1)通過(guò)證明△ADE≌△CBF,由全等三角的對(duì)應(yīng)邊相等證得AE=CF。
(2)根據(jù)平行四邊形的判定定理:對(duì)邊平行且相等的四邊形是平行四邊形證得結(jié)論。
證明:(1)如圖:∵四邊形ABCD是平行四邊形,
∴AD=BC,AD∥BC,∠3=∠4。
∵∠1=∠3+∠5,∠2=∠4+∠6,
∴∠1=∠2。
∴∠5=∠6。
∵在△ADE與△CBF中,∠3=∠4,AD=BC,∠5=∠6,
∴△ADE≌△CBF(ASA)。
∴AE=CF。
(2)∵∠1=∠2,∴DE∥BF。
又∵由(1)知△ADE≌△CBF,
∴DE=BF。
∴四邊形EBFD是平行四邊形.
“點(diǎn)睛”本題考查了平行四邊形的判定和性質(zhì),全等三角形的判定和性質(zhì),靈活運(yùn)用平行四邊形的判定定理是解題關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,拋物線的對(duì)稱軸是直線.
(1)求拋物線的表達(dá)式;
(2)點(diǎn), 在拋物線上,若,請(qǐng)直接寫(xiě)出的取值范圍;
(3)設(shè)點(diǎn)為拋物線上的一個(gè)動(dòng)點(diǎn),當(dāng)時(shí),點(diǎn)關(guān)于軸的對(duì)稱點(diǎn)都在直線的上方,求的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】根據(jù)下列已知條件,能唯一畫(huà)出△ABC的是( )
A.AB=6,BC=3,AC=9B.AB=5,BC=4,∠A=30°
C.∠C=90°,AB=6D.∠A=60°,∠B=45°,AB=4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在ABCD中,E是BC的中點(diǎn),連接AE并延長(zhǎng)交DC的延長(zhǎng)線于點(diǎn)F.
(1)求證:AB=CF;
(2)連接DE,若AD=2AB,求證:DE⊥AF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在我市舉行的中學(xué)生春季田徑運(yùn)動(dòng)會(huì)上,參加男子跳高的15名運(yùn)動(dòng)員的成績(jī)?nèi)缦卤硭荆?/span>
成績(jī)(m) | 1.50 | 1.60 | 1.65 | 1.70 | 1.75 | 1.80 |
人數(shù) | 1 | 2 | 4 | 3 | 3 | 2 |
這些運(yùn)動(dòng)員跳高成績(jī)的中位數(shù)和眾數(shù)分別是( )
A.1.70,1.65
B.1.70,1.70
C.1.65,1.70
D.3,4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】根據(jù)表格估計(jì)一元二次方程x2+2x﹣4=0的一個(gè)解的范圍在( )
x | ﹣1 | 0 | 1 | 2 | 3 |
x2+2x﹣4 | ﹣5 | ﹣4 | ﹣1 | 4 | 11 |
A.﹣1<x<0
B.0<x<1
C.1<x<2
D.2<x<3
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如果一個(gè)等腰三角形的兩邊長(zhǎng)分別為方程x2﹣5x+4=0的兩根,則這個(gè)等腰三角形的周長(zhǎng)為( )
A.6
B.9
C.6或9
D.以上都不正確
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列圖形中,對(duì)稱軸的條數(shù)最多的圖形是( 。
A. 線段 B. 角 C. 等腰三角形 D. 正方形
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com