如圖,已知直線軸交于A點(diǎn),與軸交于B點(diǎn),點(diǎn)M的坐標(biāo)為(4,0),點(diǎn)P(,)是第一象限內(nèi)直線AB上的動(dòng)點(diǎn),連接OP、MP. 設(shè)△OPM的面積為s.

(1)求s關(guān)于的函數(shù)表達(dá)式,并求的取值范圍;

(2)當(dāng)P點(diǎn)在什么位置時(shí),圖中存在與△OPM全等的三角形?畫(huà)出所有符合條件的示意圖,并說(shuō)明全等的理由(不能添加其他字母和其他輔助線);

(3)在(2)的條件下,求P點(diǎn)坐標(biāo).

圖1

 
 


(1)S=,0<<8(2)當(dāng)∠BOP=∠MOP或PM⊥OA時(shí),OPM≌APM.證明略 (3)P點(diǎn)坐標(biāo)為(,)和(4,2).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(10分)如圖,已知拋物線與軸交于A(1,0),B(,0)兩點(diǎn),與軸交于點(diǎn)
C(0,3),拋物線的頂點(diǎn)為P,連結(jié)AC.
(1)求此拋物線的解析式;
(2)在拋物線上找一點(diǎn)D,使得DC與AC垂直,且直線DC與軸交于點(diǎn)Q,求點(diǎn)D的坐標(biāo);
(3)拋物線對(duì)稱(chēng)軸上是否存在一點(diǎn)M,使得SMAP=2SACP,若存在,求出M點(diǎn)坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知拋物線與軸交于點(diǎn),,與軸交于點(diǎn)

(1)求拋物線的解析式及其頂點(diǎn)的坐標(biāo);
(2)設(shè)直線軸于點(diǎn).在線段的垂直平分線上是否存在點(diǎn),使得點(diǎn)到直線的距離等于點(diǎn)到原點(diǎn)的距離?如果存在,求出點(diǎn)的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由;
(3)過(guò)點(diǎn)軸的垂線,交直線于點(diǎn),將拋物線沿其對(duì)稱(chēng)軸平移,使拋物線與線段總有公共點(diǎn).試探究:拋物線向上最多可平移多少個(gè)單位長(zhǎng)度?向下最多可平移多少個(gè)單位長(zhǎng)度?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011-2012年江蘇省蘇州市九年級(jí)第一學(xué)期期末考試數(shù)學(xué)卷 題型:解答題

.(10分)如圖,已知拋物線與軸交于點(diǎn),與軸交于點(diǎn)

【小題1】(1)求拋物線的解析式及其頂點(diǎn)的坐標(biāo);
【小題2】(2)設(shè)直線軸于點(diǎn).在線段的垂直平分線上是否存在點(diǎn),使得點(diǎn)到直線的距離等于點(diǎn)到原點(diǎn)的距離?如果存在,求出點(diǎn)的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由;
【小題3】(3)過(guò)點(diǎn)軸的垂線,交直線于點(diǎn),將拋物線沿其對(duì)稱(chēng)軸平移,使拋物線與線段總有公共點(diǎn).試探究:拋物線向上最多可平移多少個(gè)單位長(zhǎng)度?向下最多可平移多少個(gè)單位長(zhǎng)度?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知直線軸交于點(diǎn)A,與軸交于點(diǎn)D,拋物線與直線交于A、E兩點(diǎn),與軸交于B、C兩點(diǎn),且B點(diǎn)坐標(biāo)為 (1,0)。

⑴求該拋物線的解析式;

⑵動(dòng)點(diǎn)P在軸上移動(dòng),當(dāng)△PAE是直角三角形時(shí),求點(diǎn)P的坐標(biāo)P。

⑶在拋物線的對(duì)稱(chēng)軸上找一點(diǎn)M,使的值最大,求出點(diǎn)M的坐標(biāo)。

查看答案和解析>>

同步練習(xí)冊(cè)答案