【題目】如圖,已知AE平分∠BAC,點(diǎn)DAE上一點(diǎn),連接BD,CD.請你添加一個(gè)適當(dāng)?shù)臈l件,使ABD≌△ACD.添加的條件是:____.(寫出一個(gè)即可)

【答案】AB=AC或∠B=C或∠BDA=CDA或∠BDE=CDE(四者選一即可)

【解析】

先找到證ABD≌△ACD的已知條件,然后再根據(jù)全等三角形的判定定理添加條件即可.

解:∵AE平分∠BAC,

∴∠BAD=CAD

AD=AD

再添加AB=AC,可用SAS證明ABD≌△ACD

再添加∠B=C,可用AAS證明ABD≌△ACD;

再添加∠BDA=CDA,可用ASA證明ABD≌△ACD;

再添加∠BDE=CDE,根據(jù)等角的補(bǔ)角相等,可得:∠BDA=CDA,可用ASA證明ABD≌△ACD

故答案為:AB=AC或∠B=C或∠BDA=CDA或∠BDE=CDE(四者選一即可)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,將一個(gè)點(diǎn)(橫坐標(biāo)與縱坐標(biāo)不相等)的橫坐標(biāo)與縱坐標(biāo)互換后得到的點(diǎn)叫做這個(gè)點(diǎn)的互換點(diǎn),如(-3,5)與(5,-3)是一對互換點(diǎn)”。

(1)任意一對互換點(diǎn)”________(填都能都不能)在一個(gè)反比例函數(shù)的圖象上;

(2)M、N是一對互換點(diǎn),若點(diǎn)M的坐標(biāo)為(2,-5),求直線MN的表達(dá)式;

(3)在拋物線的圖象上有一對互換點(diǎn)”A、B,其中點(diǎn)A在反比例函數(shù)的圖象上,直線AB經(jīng)過點(diǎn)P(,),求此拋物線的表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn),為軸負(fù)半軸上一點(diǎn),點(diǎn)軸正半軸上一點(diǎn),其中滿足方程

1)求點(diǎn)、的坐標(biāo);

2)點(diǎn)軸負(fù)半軸上一點(diǎn),且的面積為,求點(diǎn)的坐標(biāo);

3)在上是否存在一點(diǎn),使的面積等于的面積的一半,若存在,求出相應(yīng)的點(diǎn)的坐標(biāo),若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,AB為O的直徑,AC是O的弦,AD垂直于過點(diǎn)C的直線DC,垂足為點(diǎn)D,且AC平分∠BAD.

(1)求證:CD是O的切線;

(2)若AD=1,AB=5,求AC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】11·湖州)如圖,已知拋物線經(jīng)過點(diǎn)(0,-3),請你確定一個(gè)

b的值,使該拋物線與x軸的一個(gè)交點(diǎn)在(10)和(3,0)之間。你確定的b的值是 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某科技開發(fā)公司研制出一種新型產(chǎn)品,每件產(chǎn)品的成本為2400元,銷售單價(jià)定為3000元.在該產(chǎn)品的試銷期間,為了促銷,鼓勵(lì)商家購買該新型產(chǎn)品,公司決定商家一次購買這種新型產(chǎn)品不超過10件時(shí),每件按3000元銷售;若一次購買該種產(chǎn)品超過10件時(shí),每多購買一件,所購買的全部產(chǎn)品的銷售單價(jià)均降低10元,但銷售單價(jià)均不低于2600元.

(1)商家一次購買這種產(chǎn)品多少件時(shí),銷售單價(jià)恰好為2600元?

(2)設(shè)商家一次購買這種產(chǎn)品x件,開發(fā)公司所獲的利潤為y元,求y(元)與x(件)之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍.

(3)該公司的銷售人員發(fā)現(xiàn):當(dāng)商家一次購買產(chǎn)品的件數(shù)超過某一數(shù)量時(shí),會(huì)出現(xiàn)隨著一次購買的數(shù)量的增多,公司所獲的利潤反而減少這一情況.為使商家一次購買的數(shù)量越多,公司所獲的利潤最大,公司應(yīng)將最低銷售單價(jià)調(diào)整為多少元(其它銷售條件不變)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,AB=AD=6,AB⊥BC,AD⊥CD,∠BAD=60°,點(diǎn)M、N分別在ABAD邊上,若AMMB=ANND=12,則tan∠MCN=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,OBC的中點(diǎn),D是∠BAC平分線上的一點(diǎn),且DOBC,過點(diǎn)D分別作DMABMDNACN.求證:BMCN

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠C=90°,AC=AB.求證:∠B=30°.

請?zhí)羁胀瓿上铝凶C明.

證明:如圖,作Rt△ABC的斜邊上的中線CD,

CD=AB=AD (   ).

∵AC=AB,

∴AC=CD=AD △ACD是等邊三角形.

∴∠A=   °.

∴∠B=90°﹣∠A=30°.

查看答案和解析>>

同步練習(xí)冊答案