【題目】如圖,平行四邊形ABCD的頂點A是等邊△EFG邊FG的中點,∠B=60°,EF=4,則陰影部分的面積為________.
【答案】3
【解析】
作AM⊥EF,AN⊥EG,連接AE,只要證明△AMH≌△ANL,即可得到S陰=S四邊形AMEN,再根據(jù)三角形的面積公式即可求解.
如圖,作AM⊥EF,AN⊥EG,連接AE,
∵△ABC為等邊三角形,AF=AG,
∴∠AEF=∠AEN,
∵AM⊥EF,AN⊥EG,
∴AM=AN,
∵∠MEN=60°,∠EMA=∠ENA=90°,
∴∠MAN=120°,
∵四邊形ABCD為平行四邊形,
∴BC∥AD,
∴∠DAB=180°-∠B=120°,
∴∠MAN=∠DAB
∴∠MAH=∠NAL,
又AM⊥EF,AN⊥EG,AM=AN,
∴△AMH≌△ANL
∴S陰=S四邊形AMEN,
∵EF=4,AF=2,∠AEF=30°
∴AE=2,AM=,EM=3
∴S四邊形AMEN=2××3×=3,
∴S陰=S四邊形AMEN=3
故填:3.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點A是反比例函數(shù)y=圖象上的任意一點,過點A作AB∥x軸,AC∥y軸,分別交反比例函數(shù)y=的圖象于點B,C,連接BC,E是BC上一點,連接并延長AE交y軸于點D,連接CD,則S△DEC﹣S△BEA=_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,數(shù)軸上三個點A、O、P,點O是原點,固定不動,點A和B可以移動,點A表示的數(shù)為,點B表示的數(shù)為.
(1)若A、B移動到如圖所示位置,計算的值.
(2)在(1)的情況下,B點不動,點A向左移動3個單位長,寫出A點對應(yīng)的數(shù),并計算.
(3)在(1)的情況下,點A不動,點B向右移動15.3個單位長,此時比大多少?請列式計算.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)解不等式≤1,并把它的解集在數(shù)軸上表示出來;
(2)若關(guān)于x的一元一次不等式x≥a只有3個負整數(shù)解,則a的取值范圍是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀理解:
若A、B、C為數(shù)軸上三點,若點C到A的距離是點C到B的距離2倍,我們就稱點C是【A,B】的好點.
例如,如圖1,點A表示的數(shù)為-1,點B表示的數(shù)為2.表示1的點C到點A的距離是2,到點B的距離是1,那么點C是【A,B】的好點;又如,表示0的點D到點A的距離是1,到點B的距離是2,那么點D就不是【A,B】的好點,但點D是【B,A】的好點.
知識運用:如圖2,M、N為數(shù)軸上兩點,點M所表示的數(shù)為-2,點N所表示的數(shù)為4.
(1)數(shù)______所表示的點是【M,N】的好點;
(2)如圖3,A、B為數(shù)軸上兩點,點A所表示的數(shù)為-20,點B所表示的數(shù)為40.現(xiàn)有一只電子螞蟻P從點B出發(fā),以2個單位每秒的速度向左運動,到達點A停止.當(dāng)t為何值時,P、A和B中恰有一個點為其余兩點的好點?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把下列各數(shù)分別填入相應(yīng)的集合里.
(1)正數(shù)集合:{ …};
(2)負數(shù)集合:{ …};
(3)整數(shù)集合:{ …};
(4)分?jǐn)?shù)集合:{ …}
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小文同學(xué)統(tǒng)計了某棟居民樓中全體居民每周使用手機支付的次數(shù),并繪制了直方圖.根據(jù)圖中信息,下列說法:
①這棟居民樓共有居民140人
②每周使用手機支付次數(shù)為28~35次的人數(shù)最多
③有的人每周使用手機支付的次數(shù)在35~42次
④每周使用手機支付不超過21次的有15人
其中正確的是( )
A.①②B.②③C.③④D.④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知中,,,直角的頂點P是BC的中點,兩邊PE、PF分別交AB、AC于點E、F,給出以下五個結(jié)論:①;②是等腰直角三角形;③;④;⑤.其中正確的有( )
A.2個B.3個C.4個D.5個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知⊙O與等腰△ABD的兩腰AB、AD分別相切于點E、F,連接AO并延長到點C,使OC=AO,連接CD、CB.
(1)試判斷四邊形ABCD的形狀,并說明理由;
(2)若AB=4cm,填空:
①當(dāng)⊙O的半徑為 cm時,△ABD為等邊三角形;
②當(dāng)⊙O的半徑為 cm時,四邊形ABCD為正方形.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com