【題目】如圖,已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于點A(﹣1,0),與y軸的交點B在(0,﹣2)和C(0,﹣1)之間(不包括這兩點),對稱軸為直線x=1,下列結論:①abc>0;②4a+2b+c>0;③4ac﹣b2<8a;④;⑤b<c.其中含所有正確結論的選項是_____.
【答案】①③④
【解析】
由拋物線的開口方向判斷a與0的關系,由拋物線與y軸的交點判斷c與0的關系,然后根據(jù)對稱軸及拋物線與x軸交點情況進行推理,進而對所得結論進行判斷.
解:①由拋物線開口向上,則a>0
∵對稱軸為x=1
∴
∴可得b<0,
∵拋物線與y軸的交點B在(0,﹣2)和C(0,﹣1)之間
∴-2<c<-1<0,
∴abc>0,①是正確的;
②由點A(-1,0)和對稱軸直線x=1可知:
拋物線與x軸另一個交點為(3,0)
∴當x=2時,y=4a+2b+c<0,因此②不正確,
③∵二次函數(shù)y=ax2+bx+c的圖象與y軸的交點在(0,-1)的下方,對稱軸在y軸右側,a>0,
∴最小值:
∴,因此③正確;
④∵圖象與x軸交于點A(-1,0)和(3,0),
∴ax2+bx+c=0的兩根為-1和3,
∴根據(jù)一元二次方程根于系數(shù)關系可得:,
∴c=-3a,
∴-2<-3a<-1,
∴<a<;故④正確;
⑤拋物線過(-1,0)
∴a-b+c=0,
即,b=a+c,
又∵a>0,且
∴
∴
∴
又∵b<0,c<0
∴b>c,因此⑤不正確;
故答案為:①③④
科目:初中數(shù)學 來源: 題型:
【題目】一只箱子里共有3個球,其中2個白球,1個紅球,它們除顏色外均相同。
(1)從箱子中任意摸出一個球是白球的概率是多少?
(2)從箱子中任意摸出一個球,不將它放回箱子,攪勻后再摸出一個球,求兩次摸出球的都是白球的概率,并畫出樹狀圖。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中拋物線y=﹣x2+bx+c經(jīng)過點A、B、C,已知A(﹣1,0),C(0,3).
(1)求拋物線的表達式;
(2)如圖,P為線段BC上一點,過點P作y軸平行線,交拋物線于點D,當△BCD的面積最大時,求點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,菱形ABCD中,∠BAD=60°,AC與BD交于點O,E為CD延長線上的一點,且CD=DE,連結BE分別交AC,AD于點F、G,連結OG,則下列結論:①OG=AB;②與△EGD全等的三角形共有5個;③S四邊形ODGF>S△ABF;④由點A、B、D、E構成的四邊形是菱形.其中正確的是( )
A.①④B.①③④C.①②③D.②③④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,平面直角坐標系中,矩形OABC的兩邊分別在x軸和y軸上,OA=cm,OC=8cm,現(xiàn)有兩動點P、Q分別從O、C同時出發(fā),P在線段OA上沿OA方向以每秒cm的速度勻速運動,Q在線段CO上沿CO方向以每秒1cm的速度勻速運動.設運動時間為t秒.
(1)用t的式子表示△OPQ的面積S;
(2)求證:四邊形OPBQ的面積是一個定值,并求出這個定值;
(3)當△OPQ與△PAB和△QPB相似時,拋物線y=x 2+bx+c經(jīng)過B、P兩點,過線段BP上一動點M作y軸的平行線交拋物線于N,當線段MN的長取最大值時,求直線MN把四邊形OPBQ分成兩部分的面積之比.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù)y=x+4的圖象與反比例函數(shù)y=(k為常數(shù)且k≠0)的圖象交于A(﹣1,a),B兩點,與x軸交于點C.
(1)求此反比例函數(shù)的表達式;
(2)若點P在x軸上,且S△ACP=S△BOC,求點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】老張用400元購買了若干只種兔,老李用440元也購買了相同只數(shù)的種兔,但單價比老張購買的種兔的單價貴5元.
(1)老張與老李購買的種兔共有多少只?
(2)一年后,老張養(yǎng)兔數(shù)比買入種兔數(shù)增加了2只,老李養(yǎng)兔數(shù)比買入種兔數(shù)的2倍少1只,兩人將兔子全部售出,則售價至少為多少元時,兩人所獲得的總利潤不低于960元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ABC=90°.AB=BC.點D是線段AB上的一點,連結CD.過點B作BG⊥CD,分別交CD、CA于點E、F,與過點A且垂直于AB的直線相交于點G,連結DF,給出以下四個結論:①;②若點D是AB的中點,則AF=AB;③當B、C、F、D四點在同一個圓上時,DF=DB;④若,則S△ABC=9S△BDF,其中正確的結論序號是______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】二次函數(shù)圖象的頂點在原點,經(jīng)過點點在軸上,直線與軸交于點.
(1)求二次函數(shù)的解析式;
(2)點是拋物線上的點,過點作軸的垂線與直線交于點,求證:;
(3)當時等邊三角形時,求點的坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com