已知:如圖,BD為⊙O的直徑,AB=AC,AD交BC于E,AE=2,ED=4.
(1)求證:△ABE∽△ADB;
(2)求AB的長;
(3)延長DB到F,使BF=OB,連接FA,試判斷直線FA與⊙O的位置關(guān)系,并說明理由.
(1)證明∠ABC=∠D, ∠BAE=∠DAB可得△ABE∽△ADB (2)2
(3)證明△FAO是Rt△,即OA⊥FA,所以直線FA與⊙O相切
【解析】
試題分析:(1)證明:∵AB=AC,
∴∠ABC=∠C,
∵∠C=∠D,
∴∠ABC=∠D,
又∵∠BAE=∠DAB,
∴△ABE∽△ADB
(2)解:∵△ABE∽△ADB,
∴
∴AB2=AD?AE=(AE+ED)?AE=(2+4)×2=12,
∴AB=2
(3)解:直線FA與⊙O相切
理由如下:連接OA
∵ BD是⊙O的直徑
∴∠BAD=90°
在Rt△BAD中,AD= AE+ED=2+4=6,由(2)得AB=2
∴有BD==
∴OB=OD=BD=2
∴BF=OB= 2
在△FAO中,BF=OB=AB=FO= 2
∴△FAO是Rt△,即OA⊥FA
∴直線FA與⊙O相切
考點:
點評:直線與圓相切,相似三角形
點評:本題考查直線與圓相切,平行四邊形,掌握直線與圓相切的概念和性質(zhì),并能判斷直線與圓相切,掌握相似三角形的判定方法,會判定兩個三角形相似
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com