精英家教網 > 初中數學 > 題目詳情

【題目】一個不透明的袋子里裝著質地、大小都相同的3個紅球和2個綠球,隨機從中摸出一球,不再放回袋中,充分攪勻后再隨機摸出一球.兩次都摸到紅球的概率是(
A.
B.
C.
D.

【答案】A
【解析】解:列表如下:

﹣﹣﹣

(紅,紅)

(紅,紅)

(綠,紅)

(綠,紅)

(紅,紅)

﹣﹣﹣

(紅,紅)

(綠,紅)

(綠,紅)

(紅,紅)

(紅,紅)

﹣﹣﹣

(綠,紅)

(綠,紅)

(紅,綠)

(紅,綠)

(紅,綠)

﹣﹣﹣

(綠,綠)

(紅,綠)

(紅,綠)

(紅,綠)

(綠,綠)

﹣﹣﹣

得到所有可能的情況數為20種,其中兩次都為紅球的情況有6種,
則P兩次紅= =
故選A
【考點精析】根據題目的已知條件,利用列表法與樹狀圖法的相關知識可以得到問題的答案,需要掌握當一次試驗要設計三個或更多的因素時,用列表法就不方便了,為了不重不漏地列出所有可能的結果,通常采用樹狀圖法求概率.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,直線a、b相交于點O,∠1=50°,點A在直線a上,直線b上存在點B,使以點O、A、B為頂點的三角形是等腰三角形,這樣的B點有(
A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,點O是直線AB上的一點,∠COD是直角,OE平分∠BOC.

(1)如圖(1),若∠AOC=,求∠DOE的度數;

(2)如圖(2),將∠COD繞頂點O旋轉,且保持射線OC在直線AB上方,在整個旋轉過程中,當∠AOC的度數是多少時,∠COE=2DOB.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖四個幾何體分別是三棱柱,四棱柱,五棱柱和六棱柱,三棱柱有5個面,9條棱,6個頂點,觀察圖形,填寫下面的空.

1)四棱柱有   個面,   條棱,   個頂點;

2)六棱柱有   個面,   條棱,   個頂點;

3)由此猜想n棱柱有   個面,   條棱,   個頂點.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,直線y= x+1與y軸交于A點,過點A的拋物線y=﹣ x2+bx+c與直線交于另一點B,過點B作BC⊥x軸,垂足為點C(3,0).

(1)直接寫出拋物線的解析式;
(2)動點P在線段OC上從原點出發(fā)以每秒一個單位的速度向C移動,過點P作PN⊥x軸,交直線AB于點M,交拋物線于點N,設點P移動的時間為t秒,MN的長度為s個單位,求s與t的函數關系式,并寫出t的取值范圍;
(3)設在(2)的條件下(不考慮點P與點O,點C重合的情況),連接CM,BN,當t為何值時,四邊形BCMN為平行四邊形?對于所求的t值,平行四邊形BCMN是否菱形?請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】下列命題中,正確的個數是 ( )

①若三條線段的比為1:1:,則它們組成一個等腰直角三角形;②兩條對角線相等的平行四邊形是矩形;③對角線互相垂直的四邊形是菱形;④有兩個角相等的梯形是等腰梯形;⑤一條直線與矩形的一組對邊相交,必分矩形為兩個直角梯形。

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】計算: ÷ +(2﹣ 0﹣(﹣1)2014+| ﹣2|+(﹣ 2

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,△ABC和△ADE是有公共頂點的等腰直角三角形,∠BAC=∠DAE=90°,點P為射線BD,CE的交點.

(1)求證:BD=CE;
(2)若AB=2,AD=1,把△ADE繞點A旋轉,
①當∠EAC=90°時,求PB的長;
②直接寫出旋轉過程中線段PB長的最小值與最大值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】(本題7)如圖,在RtABCACB=90°,EAC上一點,且AE=BC,過點AADCA,垂足為A,且AD=AC,AB、DE交于點F.

(1)判斷線段ABDE的數量關系和位置關系,并說明理由;

(2)連接BD、BE,若設BC=a,AC=b,AB=c,請利用四邊形ADBE的面積證明勾股定理.

查看答案和解析>>

同步練習冊答案