已知a,b,c為實(shí)數(shù),且滿(mǎn)足下式:a2+b2+c2=1,①,a(
1
b
+
1
c
)+b(
1
c
+
1
a
)+c(
1
a
+
1
b
)=-3
;②求a+b+c的值.
分析:先對(duì)①式進(jìn)行變形,主要是給等式左邊每一大項(xiàng)一個(gè)1,再整理成兩式積等于0的形式,討論們每個(gè)式子等于0的情況,最后求出a+b+c的所有值.
解答:解:將①式變形如下,
a(
1
b
+
1
c
)+1+b(
1
c
+
1
a
)+1+c(
1
a
+
1
b
)+1=0,
即a(
1
a
+
1
b
+
1
c
)+b(
1
a
+
1
b
+
1
c
)+c(
1
a
+
1
b
+
1
c
)=0,
∴(a+b+c)(
1
a
+
1
b
+
1
c
)=0,
∴(a+b+c)•
bc+ac+ab
abc
=0,
∴a+b+c=0或bc+ac+ab=0.
若bc+ac+ab=0,則
(a+b+c)2=a2+b2+c2+2(bc+ac+ab)=a2+b2+c2=1,
∴a+b+c=±1.
∴a+b+c的值為0,1,-1.
點(diǎn)評(píng):將3拆成1+1+1,最終都是將①式變形為兩個(gè)式子之積等于零的形式,再利用兩數(shù)相乘,積為0,討論兩數(shù)的值的情況,并會(huì)利用公式(a+b+c)2=a2+b2+c2+2(bc+ac+ab)及開(kāi)方運(yùn)算.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知a、b、c為實(shí)數(shù),設(shè)A=a2-2b+
π
3
,B=b2-2c+
π
3
,C=c2-2a+
π
3

(1)判斷A+B+C的符號(hào)并說(shuō)明理由;
(2)證明:A、B、C中至少有一個(gè)值大于零.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知a、b、c為實(shí)數(shù),且
ab
a+b
=
1
3
,
bc
b+c
=
1
4
ca
c+a
=
1
5
.求
abc
ab+bc+ca
的值

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

14、已知a,b,c為實(shí)數(shù),下列命題中,假命題是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知a,b,c為實(shí)數(shù),且多項(xiàng)式x3+ax2+bx+c能夠被x2+3x-4整除.
(1)求4a+c的值;
(2)求2a-2b-c的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案