【題目】如圖左右并排的兩顆大樹的高度分別是AB=8米,CD=12米,兩樹的水平距離BD=5米,一觀測者的眼睛高EF=1.6米,且E、BD在一條直線上,當(dāng)觀測者的視線FAC恰好經(jīng)過兩棵樹的頂端時,四邊形ABDC的區(qū)域是觀測者的盲區(qū),則此時觀測者與樹AB的距離EB等于( 。

A8B7C6D5

【答案】A

【解析】

先設(shè)FH=x,則FK=FH+FK=x+5,再根據(jù)AHCD,可得出AFH∽△CFK,由相似三角形的對應(yīng)邊成比例即可求出x的值,進而得出EB的長.

解:AB=8米,CD=12米,兩樹的水平距離BD=5米,一觀測者的眼睛高EF=1.6米,

EB=FHBD=HK=5米,HB=KD=EF=1.6米,

設(shè)FH=x,則FK=FH+FK=x+5,AH=ABBH=81.6=6.4米,CK=CDKD=121.6=10.4米,

AHCD,

∴△AFH∽△CFK

,即

解得x=8米,

EB=8米.

故選A

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,RtABC中,∠ACB90°,BCAC3,點DBC邊上一點,∠DAC30°,點EAD邊上一點,CE繞點C逆時針旋轉(zhuǎn)90°得到CF,連接DF,DF的最小值是___

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1⊙O的半徑為rr0),若點P′在射線OP上,滿足OP′OP=r2,則稱點P′是點P關(guān)于⊙O反演點

如圖2⊙O的半徑為4,點B⊙O上,∠BOA=60°,OA=8,若點A′,B′分別是點AB關(guān)于⊙O的反演點,求A′B′的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市公交公司為應(yīng)對春運期間的人流高峰,計劃購買A、B兩種型號的公交車共10輛,若購買A型公交車1輛,B型公交車2輛,共需400萬元;若購買A型公交車2輛,B型公交車3輛,共需650萬元,

(1)試問該公交公司計劃購買A型和B型公交車每輛各需多少萬元?

(2)若該公司預(yù)計在某條線路上A型和B型公交車每輛年均載客量分別為60萬人次和100萬人次.若該公司購買A型和B型公交車的總費用W不超過1200萬元,且確保這10輛公交車在某條線路的年均載客量總和不少于680萬人次,則該公司有哪幾種購車方案?哪種購車方案的總費用W最少?最少總費用是多少萬元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下述材料:

我們在學(xué)習(xí)二次根式時,熟悉的分母有理化以及應(yīng)用.其實,有一個類似的方法叫做分子有理化”:

與分母有理化類似,分母和分子都乘以分子的有理化因式,從而消掉分子中的根式比如:

分子有理化可以用來比較某些二次根式的大小,也可以用來處理一些二次根式的最值問題.例如:

比較的大小.可以先將它們分子有理化如下:

因為,所以

再例如:求的最大值.做法如下:

解:由可知,而

當(dāng)時,分母有最小值2,所以的最大值是2

解決下述問題:

1)比較的大。

2)求的最大值和最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,動點在平面直角坐標(biāo)系中按圖中箭頭所示方向運動,第次從原點運動到點,第次接著運動到點,第次接著運動到點,按這樣的運動規(guī)律,經(jīng)過第次運動后,動點的坐標(biāo)是(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一艘海輪位于燈塔P的南偏東60方向,距離燈塔100海里的A處,它計劃去往位于燈塔P的北偏東45方向上的B.(參考數(shù)據(jù)≈1.414, ≈1.732, ≈2.449

1)問B處距離燈塔P有多遠(yuǎn)?(結(jié)果精確到0.1海里)

2)假設(shè)有一圓形暗礁區(qū)域,它的圓心位于射線PB上,距離燈塔190海里的點O.圓形暗礁區(qū)域的半徑為50海里,進入這個區(qū)域,就有觸礁的危險.請判斷海輪到達B處是否有觸礁的危險,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形紙片ABCD中,已知AD =8,折疊紙片使AB邊與對角線AC

重合,點B落在點F處,折痕為AE,且EF=3,則AB的長為( )

A. 3 B. 4

C. 5 D. 6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】快遞公司準(zhǔn)備購買機器人來代替人工分揀已知購買- 臺甲型機器人比購買-臺乙型機器人多萬元;購買臺甲型機器人和臺乙型機器人共需萬元.

(1)求甲、乙兩種型號的機器人每臺的價格各是多少萬元;

(2)已知甲型、乙型機器人每臺每小時分揀快遞分別是件、件,該公司計劃最多用萬元購買臺這兩種型號的機器人.該公司該如何購買,才能使得每小時的分揀量最大?

查看答案和解析>>

同步練習(xí)冊答案