【題目】我國三國時期數(shù)學家趙爽為了證明勾股定理,創(chuàng)制了一幅“弦圖”,后人稱其為“趙爽弦圖”,如圖1所示.在圖2中,若正方形ABCD的邊長為14,正方形IJKL的邊長為2,且IJ//AB,則正方形EFGH的邊長為.

【答案】10
【解析】解:易得正方形ABCD是由八個全等直角三角形和一個小方形組成的,
可,EJ=x,則HJ=x+2,
則S正方形ABCD=8× +22=142 ,
化簡得x2+2x-48=0,
解得x1=6,x2=-8(舍去).
∴正方形EFGH的邊長為 . 所以答案是10.
【考點精析】本題主要考查了勾股定理的概念的相關知識點,需要掌握直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2才能正確解答此題.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB⊥y軸,垂足為B,將△ABO繞點A逆時針旋轉到△AB1O1的位置,使點B的對應點B1落在直線y=﹣ x上,再將△AB1O1繞點B1逆時針旋轉到△A1B1O1的位置,使點O1的對應點O2落在直線y=﹣ x上,依次進行下去…若點B的坐標是(0,1),則點O12的縱坐標為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在探索“尺規(guī)三等分角”這個數(shù)學名題的過程中,曾利用了如圖,該圖中,四邊形ABCD是矩形,E是BA延長線上一點,F(xiàn)是CE上一點,∠ACF=∠AFC,∠FAE=∠FEA。若∠ACB=21°,則∠ECD的度數(shù)是( )

A.7°
B.21°
C.23°
D.24°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知直線CD⊥AB于點O,∠EOF=90°,射線OP平分∠COF.

(1)如圖1,∠EOF在直線CD的右側:

①若∠COE=30°,求∠BOF和∠POE的度數(shù);

②請判斷∠POE與∠BOP之間存在怎樣的數(shù)量關系?并說明理由.

(2)如圖2,∠EOF在直線CD的左側,且點E在點F的下方:

①請直接寫出∠POE與∠BOP之間的數(shù)量關系;

②請直接寫出∠POE與∠DOP之間的數(shù)量關系.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形OABC的邊OA,OC分別在x軸、y軸上,點B在第一象限,點D在邊BC上,且∠AOD=30°,四邊形OA′B′D與四邊形OABD關于直線OD對稱(點A′和A,B′和B分別對應).若AB=1,反比例函數(shù)y= (k≠0)的圖象恰好經(jīng)過點A′,B,則k的值為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】電腦中有一種游戲——蜘蛛紙牌,開始游戲前有500分的基本分,游戲規(guī)則如下:①操作一次減x分;②每完成一列加y分.有一次小明在玩這種蜘蛛紙牌游戲時,隨手用表格記錄了兩個時段的電腦顯示:

第一時段

第二時段

完成列數(shù)

2

5

分數(shù)

634

898

操作次數(shù)

66

102

(1)通過列方程組,求x,y的值

(2)如果小明最終完成此游戲(即完成10),分數(shù)是1 182,問他一共操作了多少次?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】隨著社會的發(fā)展,通過微信朋友圈發(fā)布自己每天行走的步數(shù)已經(jīng)成為一種時尚.健身達人小陳為了了解他的好友的運動情況.隨機抽取了部分好友進行調查,把他們61日那天行走的情況分為四個類別:A(0~5000步)(說明:“0~5000”表示大于等于0,小于等于5000,下同),B(5001~10000步),C(10001~15000步),D(15000步以上),統(tǒng)計結果如圖所示:

請依據(jù)統(tǒng)計結果回答下列問題:

(1)本次調查中,一共調查了   位好友.

(2)已知A類好友人數(shù)是D類好友人數(shù)的5倍.

①請補全條形圖;

②扇形圖中,“A”對應扇形的圓心角為   度.

③若小陳微信朋友圈共有好友150人,請根據(jù)調查數(shù)據(jù)估計大約有多少位好友61日這天行走的步數(shù)超過10000步?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,已知直線l1l2,且l3l1l2分別相交于A,B兩點,l4l1,l2分別交于C,D兩點,∠ACP1,BDP2CPD3,

P在線段AB

(1)若∠122°,233°,則∠3________

(2)試找出∠1,23之間的等量關系,并說明理由;

(3)應用(2)中的結論解答下列問題

如圖②,AB處北偏東40°的方向上,在C處的北偏西45°的方向上,求∠BAC的度數(shù);

(4)如果點P在直線l3上且在A,B兩點外側運動時,其他條件不變,試探究∠1,2,3之間的關系(PA,B兩點不重合),直接寫出結論即可.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在一次中學生田徑運動會上,根據(jù)參加男子跳高初賽的運動員的成績(單位:m),繪制出如下兩幅統(tǒng)計圖.請根據(jù)相關信息,解答下列問題:

(1)扇形統(tǒng)計圖中a= , 初賽成績?yōu)?.70m所在扇形圖形的圓心角為°;
(2)補全條形統(tǒng)計圖;
(3)這組初賽成績的眾數(shù)是 m,中位數(shù)是 m;
(4)根據(jù)這組初賽成績確定8人進入復賽,那么初賽成績?yōu)?.60m的運動員楊強能否進入復賽?為什么?

查看答案和解析>>

同步練習冊答案