(2011•常州)已知:如圖1,圖形①滿足AD=AB,MD=MB,∠A=72°,∠M=144°.圖形②與圖形①恰好拼成一個(gè)菱形(如圖2).記AB的長(zhǎng)度為a,BM的長(zhǎng)度為b.
(1)圖形①中∠B= 72 °,圖形②中∠E= 36 °;
(2)小明有兩種紙片各若干張,其中一種紙片的形狀及大小與圖形①相同,這種紙片稱(chēng)為“風(fēng)箏一號(hào)”;另一種紙片的形狀及大小與圖形②相同,這種紙片稱(chēng)為“飛鏢一號(hào)”.
①小明僅用“風(fēng)箏一號(hào)”紙片拼成一個(gè)邊長(zhǎng)為b的正十邊形,需要這種紙片 5 張;
②小明若用若干張“風(fēng)箏一號(hào)”紙片和“飛鏢一號(hào)”紙片拼成一個(gè)“大風(fēng)箏”(如圖3),其中∠P=72°,∠Q=144°,且PI=PJ=a+b,IQ=JQ.請(qǐng)你在圖3中畫(huà)出拼接線并保留畫(huà)圖痕跡.(本題中均為無(wú)重疊、無(wú)縫隙拼接)

解:(1)連接AM,如圖所示:

∵AD=AB,DM=BM,AM為公共邊,
∴△ADM≌△ABM,
∴∠D=∠B,
又因?yàn)樗倪呅蜛BMD的內(nèi)角和等于360°,∠DAB=72°,∠DMB=144°,
∴∠B==72°;
在圖2中,因?yàn)樗倪呅蜛BCD為菱形,所以AB∥CD,
∴∠A+∠ADC=∠A+∠ADM+∠CEF=180°,∠A=72°,∠ADM=72°,
∴∠CEF=180°﹣72°﹣72°=36°;
(2)①用“風(fēng)箏一號(hào)”紙片拼成一個(gè)邊長(zhǎng)為b的正十邊形,
得到“風(fēng)箏一號(hào)”紙片的點(diǎn)A與正十邊形的中心重合,又∠A=72°,
則需要這種紙片的數(shù)量==5;
②根據(jù)題意可知:“風(fēng)箏一號(hào)”紙片用兩張和“飛鏢一號(hào)”紙片用一張,
畫(huà)出拼接線如圖所示:

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2011•常州)已知:如圖1,圖形①滿足AD=AB,MD=MB,∠A=72°,∠M=144°.圖形②與圖形①恰好拼成一個(gè)菱形(如圖2).記AB的長(zhǎng)度為a,BM的長(zhǎng)度為b.
(1)圖形①中∠B= 72 °,圖形②中∠E= 36 °;
(2)小明有兩種紙片各若干張,其中一種紙片的形狀及大小與圖形①相同,這種紙片稱(chēng)為“風(fēng)箏一號(hào)”;另一種紙片的形狀及大小與圖形②相同,這種紙片稱(chēng)為“飛鏢一號(hào)”.
①小明僅用“風(fēng)箏一號(hào)”紙片拼成一個(gè)邊長(zhǎng)為b的正十邊形,需要這種紙片 5 張;
②小明若用若干張“風(fēng)箏一號(hào)”紙片和“飛鏢一號(hào)”紙片拼成一個(gè)“大風(fēng)箏”(如圖3),其中∠P=72°,∠Q=144°,且PI=PJ=a+b,IQ=JQ.請(qǐng)你在圖3中畫(huà)出拼接線并保留畫(huà)圖痕跡.(本題中均為無(wú)重疊、無(wú)縫隙拼接)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011年江蘇省常州市中考數(shù)學(xué)試卷 題型:解答題

(2011•常州)已知:如圖,在△ABC中,D為BC上的一點(diǎn),AD平分∠EDC,且∠E=∠B,DE=DC,求證:AB=AC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011年江蘇省常州市中考數(shù)學(xué)試卷 題型:填空題

(2011?常州)已知扇形的圓心角為150°,它所對(duì)應(yīng)的弧長(zhǎng)20πcm,則此扇形的半徑是  cm,面積是  cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011年江蘇省常州市中考數(shù)學(xué)試卷 題型:填空題

(2011?常州)已知關(guān)于x的一次函數(shù)y=kx+4k﹣2(k≠0).若其圖象經(jīng)過(guò)原點(diǎn),則k=,若y隨著x的增大而減小,則k的取值范圍是  

查看答案和解析>>

同步練習(xí)冊(cè)答案