【題目】已知,Rt△ABC中,∠C=90°,BC=6,AC=8.動點P從點A出發(fā)沿A—B—C的方向以每秒2個單位的速度運動.設(shè)P的運動時間為t(秒).

(1)請直接用含t的代數(shù)式表示當(dāng)點PAB上時,BP= ;②當(dāng)點PBC上時,BP= ;

(2)求△BPC為等腰三角形的t.

(備用圖)

【答案】110-2t,2t-10;(2t=2.521.4.

【解析】

1)由勾股定理求出AB的長,①當(dāng)點PAB上時,BP= AB-AP,②當(dāng)點PBC上時,BP=2tAB,即可得出結(jié)論;

2)分三種情況討論①作BC的垂直平分線交AB于點P,BC于點E連接PC,則△BPC是等腰三角形;②以B為圓心,BC為半徑作弧與AB交于點P連接PC則△BPC是等腰三角形;③以C為圓心BC為半徑作弧與AB交于點PCCDABD,連接PC則△BPC是等腰三角形分別計算即可

1)①∵C=90°,BC=6AC=8,∴AB==10,BP=AB-AP=102t;

BP=2tAB=2t10;

2)分三種情況討論:①如圖1BC的垂直平分線交AB于點P,BC于點E連接PC,則△BPC是等腰三角形

∵∠C=90°,∴PEAC

BE=EC,∴AP=PB=AB=5,∴t=5÷2=2.5;

如圖2B為圓心,BC為半徑作弧與AB交于點P連接PC則△BPC是等腰三角形

PB=BC=6,∴AP=ABBP=106=4,t=4÷2=2;

如圖3,C為圓心BC為半徑作弧與AB交于點PCCDABD,連接PC,則△BPC是等腰三角形

ACBC=ABCD,∴CD==4.8,∴BD==3.6

∵∵PC=BC=6,∴PD=BD=3.6,∴AP=ABBP=107.2=2.8,t=2.8÷2=1.4

綜上所述t=2.521.4

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我市為全面推進(jìn)“十個全覆蓋”工作,綠化提質(zhì)改造工程如火如荼地進(jìn)行,某施工隊計劃購買甲、乙兩種樹苗共600棵對某標(biāo)段道路進(jìn)行綠化改造,已知甲種樹苗每棵100元,乙種樹苗每棵200元.
(1)若購買兩種樹苗的總金額為70000元,求需購買甲、乙兩種樹苗各多少棵?
(2)若購買甲種樹苗的金額不少于購買乙種樹苗的金額,至少應(yīng)購買甲種樹苗多少棵?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校冬季會把課間操改為跑步,但是發(fā)現(xiàn)部分學(xué)生沒有穿運動鞋的習(xí)慣,為保證學(xué)生的安全,學(xué)校準(zhǔn)備購買一批運動鞋供學(xué)生借用,現(xiàn)從各年級隨機(jī)抽取了部分學(xué)生的鞋號,繪制出如下兩幅不完整的統(tǒng)計圖,請根據(jù)相關(guān)信息,解答下列問題.

(I)本次接受隨機(jī)抽樣調(diào)查的學(xué)生人數(shù)為_____;

(Ⅱ)在條形統(tǒng)計圖中,請把空缺部分補充完整;

(Ⅲ)求本次調(diào)查獲取的樣本數(shù)據(jù)的眾數(shù)與中位數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)y=ax2+bx+c的圖象經(jīng)過點A(﹣1,0),B(0,﹣ ),C(2,0),其對稱軸與x軸交于點D

(1)求二次函數(shù)的表達(dá)式及其頂點坐標(biāo);
(2)若P為y軸上的一個動點,連接PD,則 PB+PD的最小值為;
(3)M(x,t)為拋物線對稱軸上一動點
①若平面內(nèi)存在點N,使得以A,B,M,N為頂點的四邊形為菱形,則這樣的點N共有 個;
②連接MA,MB,若∠AMB不小于60°,求t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,正方形ABCD的面積為12,△ABE是等邊三角形,點E在正方形內(nèi),在對角線AC上找到一點P,使PD+PE的和最小,則這個和的最小值是(  。

A. B. C. 3 D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市對初二綜合素質(zhì)測評中的審美與藝術(shù)進(jìn)行考核,規(guī)定如下:考核綜合評價得分由測試成績(滿分100分)和平時成績(滿分100分)兩部分組成,其中測試成績占80%,平時成績占20%,并且當(dāng)綜合評價得分大于或等于80分時,該生綜合評價為A等.
(1)孔明同學(xué)的測試成績和平時成績兩項得分之和為185分,而綜合評價得分為91分,則孔明同學(xué)測試成績和平時成績各得多少分?
(2)某同學(xué)測試成績?yōu)?0分,他的綜合評價得分有可能達(dá)到A等嗎?為什么?
(3)如果一個同學(xué)綜合評價要達(dá)到A等,他的測試成績至少要多少分?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AB=4,BC=3,連接AC,⊙P和⊙Q分別是△ABC和△ADC的內(nèi)切圓,則PQ的長是(

A.
B.
C.
D.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,BD△ABC的角平分線,且BD=BC,EBD延長線上的一點,BE=BA,過EEF⊥AB,F(xiàn)為垂足.下列結(jié)論:①△ABD≌△EBC; ②∠BCE+∠BCD=180°; ③AF2=EC2﹣EF2; ④BA+BC=2BF.其中正確的是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知∠A=D有下列五個條件①AE=DE BE=CE AB=DC ④∠ABC=DCBAC=BD能證明ABCDCB全等的條件有幾個?并選擇其中一個進(jìn)行證明。

查看答案和解析>>

同步練習(xí)冊答案