如下圖所示,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于點E,AD⊥CE于點D.DE=6cm,AD=9cm,則BE的長是


  1. A.
    6cm
  2. B.
    1.5cm
  3. C.
    3cm
  4. D.
    4.5cm
C
分析:本題可通過全等三角形來求BE的長.△BEC和△CDA中,已知了一組直角,∠CBE和∠ACD同為∠BCE的余角,AC=BC,可據(jù)此判定兩三角形全等;那么可得出的條件為CE=AD,BE=CD,因此只需求出CD的長即可.而CD的長可根據(jù)CE即AD的長和DE的長得出,由此可得解.
解答:∵∠ACB=90°,BE⊥CE,
∴∠BCE+∠ACD=90°,∠BCE+∠CBE=90°;
∴∠ACD=∠CBE,又AC=BC,
∴△ACD≌△CBE;
∴EC=AD,BE=DC;
∵DE=6cm,AD=9cm,則BE的長是3cm.
故選C.
點評:三角形全等的判定是中考的熱點,一般以考查三角形全等的方法為主,判定兩個三角形全等,先根據(jù)已知條件或求證的結論確定三角形,然后再根據(jù)三角形全等的判定方法,看缺什么條件,再去證什么條件.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)心理學家研究發(fā)現(xiàn),一般情況下,一節(jié)課40分鐘中,學生的注意力隨教師講課的變化而變化.開始上課時,學生的注意力逐步增強,中間有一段時間學生的注意力保持較為理想的穩(wěn)定狀態(tài),隨后學生的注意力開始分散.經(jīng)過實驗分析可知,學生的注意力指標數(shù)y隨時間x(分鐘)的變化規(guī)律如下圖所示(其中AB、BC分別為線段,CD為雙曲線的一部分):
(1)開始上課后第五分鐘時與第三十分鐘時相比較,何時學生的注意力更集中?
(2)一道數(shù)學競賽題,需要講19分鐘,為了效果較好,要求學生的注意力指標數(shù)最低達到36,那么經(jīng)過適當安排,老師能否在學生注意力達到所需的狀態(tài)下講解完這道題目?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如下圖所示,在△ABC中,∠A=40°,∠B=90°,AC的垂直平分線MN分別與AB、AC交于點D、E,求∠BCD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

11、證明:如下圖所示,在四邊形ABCD中,AB+BD≤AC+CD,求證:AB<AC.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如下圖所示,在△ABC中,AB=AC,BC=6,點E、F是中線AD上的兩點,且AD=4,則圖中陰影部分的面積為( 。
A、6B、12C、24D、3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如下圖所示,在等邊△ABC中,AD⊥BC,BD=3,則AB=
6
6

查看答案和解析>>

同步練習冊答案