精英家教網 > 初中數學 > 題目詳情

【題目】已知關于x的方程mx2﹣(m+3)x+3=0(m≠0).
(1)求證:方程總有兩個實數根;
(2)如果方程的兩個實數根都是整數,且有一根大于1,求滿足條件的整數m的值.

【答案】
(1)證明:∵m≠0,

∴方程mx2﹣(m+3)x+3=0(m≠0)是關于x的一元二次方程,

∴△=(m+3)2﹣4×m×3

=(m﹣3)2,

∵(m﹣3)2≥0,即△≥0,

∴方程總有兩個實數根


(2)解:∵x= ,

∴x1=1,x2=

∵方程的兩個實數根都是整數,且有一根大于1,

為大于1的整數,

∵m為整數,

∴m=1


【解析】(1)先計算判別式得到△=(m+3)2﹣4×m×3=(m﹣3)2 , 利用非負數的性質得到△≥0,然后根據判別式的意義即可得到結論;(2)利用公式法可求出x1=1,x2= ,然后利用整除性即可得到m的值.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖1,對△ABC,D是BC邊上一點,連結AD,當 = 時,稱AD為BC邊上的“平方比線”.同理AB和AC邊上也存在類似的“平方比線”.

(1)如圖2,△ABC中,∠BAC=RT∠,AD⊥BC于D.
證明:AD為BC邊上的“平方比線”;

(2)如圖3,在平面直角坐標系中,B(﹣4,0),C(1,0),在y軸的正半軸上找一點A,使OA是△ABC中BC邊上的“平方比線”.
①求出點A的坐標;
②如圖4,以M( ,0)為圓心,MA為半徑作圓,在⊙M上任取一點P(與x軸交點除外)嗎,連結PB,PC,PO.求證:PO始終是△PBC中BC邊上的“平方比線”.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知拋物線y=x2+bx+c與x軸交于A,B兩點,與y軸交于點C,O是坐標原點,點A的坐標是(﹣1,0),點C的坐標是(0,﹣3).

(1)求拋物線的函數表達式;
(2)求直線BC的函數表達式和∠ABC的度數;
(3)在線段BC上是否存在一點P,使△ABP∽△CBA?若存在,求出點P的坐標;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在矩形ABCD中,P為AD上一點,連接BP,CP,過C作CE⊥BP于點E,連接ED交PC于點F.

(1)求證:△ABP∽△ECB;
(2)若點E恰好為BP的中點,且AB=3,AP=k(0<k<3).
①求 的值(用含k的代數式表示);
②若M、N分別為PC,EC上的任意兩點,連接NF,NM,當k= 時,求NF+NM的最小值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖是二次函數y=ax2+bx+c(a≠0)圖象的一部分,對稱軸為x= ,且經過點(2,0),有下列說法:①abc<0;②a+b=0;③4a+2b+c<0;④若(0,y1),(1,y2)是拋物線上的兩點,則y1=y2 . 上述說法正確的是(

A.①②④
B.③④
C.①③④
D.①②

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知在Rt△ABC中,∠ACB=90°,現按如下步驟作圖:
①分別以A,C為圓心,a為半徑(a> AC)作弧,兩弧分別交于M,N兩點;
②過M,N兩點作直線MN交AB于點D,交AC于點E;
③將△ADE繞點E順時針旋轉180°,設點D的像為點F.

(1)請在圖中直線標出點F并連接CF;
(2)求證:四邊形BCFD是平行四邊形;
(3)當∠B為多少度時,四邊形BCFD是菱形.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某公司銷售A,B兩種產品,根據市場調研,確定兩條信息:
信息1:銷售A種產品所獲利潤y:(萬元)與銷售產品x(噸)之間存在二次函數關系,如圖所示:
信息2:銷售B種產品所獲利潤y(萬元)與銷售產品x(噸)之間存在正比例函數關系y2=0.3x.
根據以上信息,解答下列問題;

(1)求二次函數解析式;
(2)該公司準備購進A、B兩種產品共10噸,求銷售A、B兩種產品獲得的利潤之和最大是多少萬元.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,甲、乙兩動點分別從正方形ABCD的頂點A、C同時沿正方形的邊開始移動,甲點依順時針方向環(huán)行,乙點依逆時針方向環(huán)行.若甲的速度是乙的速度的3倍,則它們第2015次相遇在邊上.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在平面直角坐標系xOy中,對于P(a,b)和點Q(a,b′),給出如下定義:若b′= ,則稱點Q為點P的限變點.例如:點(2,3)的限變點的坐標是(2,3),點(﹣2,5)的限變點的坐標是(﹣2,﹣5).
(1)點( ,1)的限變點的坐標是;
(2)判斷點A(﹣2,﹣1)、B(﹣1,2)中,哪一個點是函數y= 圖象上某一個點的限變點?并說明理由;
(3)若點P(a,b)在函數y=﹣x+3的圖象上,其限變點Q(a,b′)的縱坐標的取值范圍是﹣6≤b′≤﹣3,求a的取值范圍.

查看答案和解析>>

同步練習冊答案