【題目】如圖,在矩形中,,,動(dòng)點(diǎn)P以的速度從A點(diǎn)出發(fā),沿向C點(diǎn)移動(dòng),同時(shí)動(dòng)點(diǎn)Q以的速度從點(diǎn)C出發(fā),沿向點(diǎn)B移動(dòng),設(shè)P、Q兩點(diǎn)移動(dòng)的時(shí)間為t秒.
(1)t為多少時(shí),以P、Q、C為頂點(diǎn)的三角形與相似?
(2)在P、Q兩點(diǎn)移動(dòng)過程中,四邊形與的面積能否相等?若能,求出此時(shí)t的值;若不能,請(qǐng)說(shuō)明理由.
【答案】(1)t為或時(shí),以P、Q、C為頂點(diǎn)的三角形與相似;(2)四邊形與的面積不能相等,理由見解析.
【解析】
(1)先利用勾股定理計(jì)算出AC=10,由于∠PCQ=∠ACB,根據(jù)三角形相似的判定,當(dāng)∠PQC=∠B時(shí)可判斷CQP∽△CBA,利用相似比得到 ;當(dāng)∠PQC=∠BAC時(shí)可判斷△CQP∽△CAB,利用相似比得到,然后分別解方程求出t的值即可;
(2)作PQ⊥BC于H,如圖,先證明△CPH∽△CAB,利用相似比可得到PH=,再利用四邊形ABQP與△CPQ的面積相等得到S△ABC=2S△CPQ,利用三角形面積公式得到268,然后解關(guān)于t的方程可判斷四邊形ABQP與△CPQ的面積能否相等.
(1)在R中,,
∵,
∴當(dāng)時(shí),,則,即,解得;
當(dāng)時(shí),,則,即,解得;
∴t為或時(shí),以P、Q、C為頂點(diǎn)的三角形與相似;
(2)四邊形與的面積不能相等.
理由如下:
作于H,如圖,
∵,
∴,
∴,即,
∴,
當(dāng)四邊形與的面積相等時(shí),
,即,
∴,
整理得,此時(shí)方程無(wú)實(shí)數(shù)解,
∴四邊形與的面積不能相等.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=x2+(1-m)x-m交x軸于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊),交y軸負(fù)半軸于點(diǎn)C.
(1)如圖1,m=3
①直接寫出A,B,C三點(diǎn)的坐標(biāo);
②若拋物線上有一點(diǎn)D,∠ACD=45°,求點(diǎn)D的坐標(biāo);
(2)如圖2,過點(diǎn)E(m,2)作一直線交拋物線于點(diǎn)P,Q兩點(diǎn),連接AP,AQ,分別交y軸于M,N兩點(diǎn),求證:OMON是一個(gè)定值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某文具店購(gòu)進(jìn)一批紀(jì)念冊(cè),每本進(jìn)價(jià)為20元,在銷售過程中發(fā)現(xiàn)該紀(jì)念冊(cè)每周的銷售量y(本)與每本紀(jì)念冊(cè)的售價(jià)x(元)之間滿足一次函數(shù)關(guān)系:當(dāng)銷售單價(jià)為22元時(shí),銷售量為36本;當(dāng)銷售單價(jià)為24元時(shí),銷售量為32本.
(1)求出y與x的函數(shù)關(guān)系式;
(2)設(shè)該文具店每周銷售這種紀(jì)念冊(cè)所獲得的利潤(rùn)為w元,將該紀(jì)念冊(cè)銷售單價(jià)定為多少元時(shí),才能使文具店銷售該紀(jì)念冊(cè)所獲利潤(rùn)最大?最大利潤(rùn)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD內(nèi)接于⊙O,∠DAB=90°,點(diǎn)E在BC的延長(zhǎng)線上,且∠CED=∠CAB.
(1)求證:DE是⊙O的切線.
(2)若AC∥DE,當(dāng)AB=8,DC=4時(shí),求AC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a,b,c為常數(shù),且a≠0)中的x與y的部分對(duì)應(yīng)值如表
x | ﹣1 | 0 | 1 | 3 |
y | ﹣1 | 3 | 5 | 3 |
下列結(jié)論:
①ac<0;
②當(dāng)x>1時(shí),y的值隨x值的增大而減。
③3是方程ax2+(b﹣1)x+c=0的一個(gè)根;
④當(dāng)﹣1<x<3時(shí),ax2+(b﹣1)x+c>0.
其中正確的結(jié)論是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是一張長(zhǎng)、寬的矩形紙板。將紙板四個(gè)角各剪去一個(gè)邊長(zhǎng)為的正方形,然后將四周突出部分折起,可制成一個(gè)底面積是的無(wú)激長(zhǎng)方體紙盒,則的值為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平行四邊形中,,,且于點(diǎn),點(diǎn)分別是邊上的動(dòng)點(diǎn),且.
①求證:四邊形是平行四邊形;
②當(dāng)為何值時(shí),四邊形是矩形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某小組在“用頻率估計(jì)概率”的實(shí)驗(yàn)中,統(tǒng)計(jì)了某種頻率結(jié)果出現(xiàn)的頻率,繪制了如圖所示的折線統(tǒng)計(jì)圖,那么符合這一結(jié)果的實(shí)驗(yàn)最有可能的是( 。
A. 擲一枚質(zhì)地均勻的硬幣,落地時(shí)結(jié)果是“正面向上”
B. 擲一個(gè)質(zhì)地均勻的正六面體骰子,落地時(shí)朝上的面點(diǎn)數(shù)是6
C. 在“石頭剪刀、和”的游戲中,小明隨機(jī)出的是“剪刀”
D. 袋子中有1個(gè)紅球和2個(gè)黃球,只有顏色上的區(qū)別,從中隨機(jī)取出一個(gè)球是黃球
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】知拋物線y=x2﹣4x+2.
(1)此拋物線與y軸的交點(diǎn)坐標(biāo)是 ,頂點(diǎn)坐標(biāo)是 .
(2)在坐標(biāo)系中利用描點(diǎn)法畫出此拋物線.
x | … | … | |||||
y | … | … |
(3)結(jié)合圖象回答:若點(diǎn)A(6,t)和點(diǎn)B(m,n)都在拋物線y=x2﹣4x+2上,且n<t,則m的取值范圍是 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com