如圖,△ABC為等腰直角三角形,∠BAC=90°,BC=2,E為AB上任意一動點,以CE為斜邊作等腰Rt△CDE,連接AD,下列說法:
①∠BCE=∠ACD;②AC⊥ED;③△AED∽△ECB;④AD∥BC;⑤四邊形ABCD的面積有最大值,且最大值為.其中,正確的結論是           

A.①②④ B.①③⑤ C.②③④ D.①④⑤

①④⑤.

解析試題分析:首先根據(jù)已知條件看能得到哪些等量條件,然后根據(jù)得出的條件來判斷各結論是否正確.
∵△ABC、△DCE都是等腰Rt△,
∴AB=AC=BC=,CD=DE=CE;
∠B=∠ACB=∠DEC=∠DCE=45°;
①∵∠ACB=∠DCE=45°,
∴∠ACB-∠ACE=∠DCE-∠ACE;
即∠ECB=∠DCA;故①正確;
②當B、E重合時,A、D重合,此時DE⊥AC;
當B、E不重合時,A、D也不重合,由于∠BAC、∠EDC都是直角,則∠AFE、∠DFC必為銳角;
故②不完全正確;
④∵,
;
由①知∠ECB=∠DCA,∴△BEC∽△ADC;
∴∠DAC=∠B=45°;
∴∠DAC=∠BCA=45°,即AD∥BC,故④正確;
③由④知:∠DAC=45°,則∠EAD=135°;
∠BEC=∠EAC+∠ECA=90°+∠ECA;
∵∠ECA<45°,∴∠BEC<135°,即∠BEC<∠EAD;
因此△EAD與△BEC不相似,故③錯誤;
⑤△ABC的面積為定值,若梯形ABCD的面積最大,則△ACD的面積最大;△ACD中,AD邊上的高為定值(即為1),若△ACD的面積最大,則AD的長最大;
由④的△BEC∽△ADC知:當AD最長時,BE也最長;
故梯形ABCD面積最大時,E、A重合,此時EC=AC=,AD=1;
故S梯形ABCD=(1+2)×1=,故⑤正確;
因此本題正確的結論是①④⑤.
考點:1.相似三角形的判定;2.平行線的判定;3.等腰三角形的性質.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:解答題

已知,如圖,直線AB與直線BC相交于點B,點D是直線BC上一點
求作:點E,使直線DE∥AB,且點E到B、D兩點的距離相等(在題目的原圖中完成作圖)

結論:

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:單選題

已知點C是線段AB上的一個點,且滿足,則下列式子成立的是……( )

A.B.C.; D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:單選題

如圖,在邊長為9的正方形ABCD中, F為AB上一點,連接CF.過點F作FE⊥CF,交AD于點E,若AF=3,則AE等于(   ) 

A.1 B.1.5 C.2 D.2.5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:單選題

如圖,△ABC中,AE交BC于點D,∠C=∠E,AD=4,BC=8,BD:DC=5:3,則DE的長等于( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:單選題

在比例尺是1:38000的黃浦江交通游覽圖上,某隧道長約7,它的實際長度約為(    )

A.0.266; B.2.66; C.26.6; D.266.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:單選題

如圖,在△ABC中,D、E分別是AB、AC上的點,且DE∥BC,若AD=5,DB=3,DE=4,則BC等于
 
A.        B.     C.     D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:單選題

如圖,△ABC中,A、B兩個頂點在x軸的上方,點C的坐標是(﹣1,0).以點C為位似中心,在x軸的下方作△ABC的位似圖形△A′B′C,并把△ABC的邊長放大到原來的2倍.設點B的對應點B′的橫坐標是a,則點B的橫坐標是( 。

A.        B.       C.       D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:單選題

如圖,已知直線a∥b∥c,直線m、n與a、b、c分別交于點A、C、E、B、D、F,AC=4,CE=6,BD=3,則BF=(  )

A.7  B.7.5  C.8  D.8.5

查看答案和解析>>

同步練習冊答案