【題目】如圖1,是的直徑,是弦,點(diǎn)是的中點(diǎn),交的延長線于.
(1)求證:是的切線;
(2)如圖2,作于,交于,若,,求的長.
【答案】(1)見解析;(2)8
【解析】
(1)連接BC、OP,由AB是⊙O的直徑、PE⊥AE知PE∥BC,根據(jù)點(diǎn)P是的中點(diǎn)知OP⊥BC,即可得OP⊥PE;
(2)由(1)知,四邊形PECQ是矩形,從而可設(shè)PE=CQ=BQ=x,根據(jù)勾股定理求得BN的長,先證△BHN∽△BQO得,表示出BO、OQ的長,再證△PQN∽△BHN得,即,求出x即可.
解:(1)如圖1,連接BC、OP,
∵AB是⊙O的直徑,
∴∠ACB=90°,即BC⊥AE,
又∵PE⊥AE,
∴PE∥BC,
∵點(diǎn)P是的中點(diǎn),
∴OP⊥BC,
∴OP⊥PE,
∴PE是⊙O的切線;
(2)如圖2,連接OP,
由(1)知,四邊形PECQ是矩形,
∴設(shè)PE=CQ=BQ=x,
∵NH=3,BH=4,PH⊥AB,
∴BN=5,
∵∠B=∠B,∠BHN=∠BQO=90°,
∴△BHN∽△BQO,
∴,即,
解得:BO=,OQ=,
∴PQ=PO-OQ=BO-OQ=,
∵∠PNQ=∠BNH,∠PQN=∠BHN=90°,
∴△PQN∽△BHN,
∴,
即,
解得:,
∴PE=8.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為推進(jìn)揚(yáng)州市“五個(gè)一百工程”活動(dòng),小明、小亮、小麗3人分別從A、B兩種不同的名著中任意選擇一種閱讀
(1)小明選擇A種名著閱讀的概率是 ;
(2)求小明、小亮、小麗3人選擇同一種名著閱讀的概率(請用畫樹狀圖的方法給出分析過程,并求出結(jié)果)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在“學(xué)本課堂”的實(shí)踐中,王老師經(jīng)常讓學(xué)生以“問題”為中心進(jìn)行自主、合作、探究學(xué)習(xí).
(課堂提問)王老師在課堂中提出這樣的問題:如圖1,在Rt△ABC中,∠ACB=90°,∠BAC=30°,那么BC和AB有怎樣的數(shù)量關(guān)系?
(互動(dòng)生成)經(jīng)小組合作交流后,各小組派代表發(fā)言.
(1)小華代表第3小組發(fā)言:AB=2BC. 請你補(bǔ)全小華的證明過程.
證明:把△ABC沿著AC翻折,得到△ADC.
∴∠ACD=∠ACB=90°,
∴∠BCD=∠ACD+∠ACB=90°+90°=180°,
即:點(diǎn)B、C、D共線.(請?jiān)谙旅嫜a(bǔ)全小華的證明過程)
(2)受到第3小組“翻折”的啟發(fā),小明代表第2小組發(fā)言:如圖2,在△ABC中,如果把條件“∠ACB=90°”改為“∠ACB=135°”,保持“∠BAC=30°”不變,若BC=1,求AB的長.
(思維拓展)如圖3,在四邊形ABCD中,∠BCD=45°,∠BAD=90°,∠ADB=∠CDB=60°,且AC=3,則△ABD的周長為 .
(能力提升)如圖4,點(diǎn)D是△ABC內(nèi)一點(diǎn),AD=AC,∠BAD=∠CAD=20°,∠ADB+∠ACB=210°,則AD、DB、BC三者之間的相等關(guān)系是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,矩形AOCB的兩邊OA、OC分別在x軸和y軸上,且OA=2,OC=1.在第二象限內(nèi),將矩形AOCB以原點(diǎn)O為位似中心放大為原來的倍,得到矩形A1OC1B1,再將矩形A1OC1B1以原點(diǎn)O為位似中心放大倍,得到矩形A2OC2B2…,以此類推,得到的矩形AnOCnBn的對角線交點(diǎn)的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線的頂點(diǎn)為B(1,3),與軸的交點(diǎn)A在點(diǎn) (2,0)和(3,0)之間.以下結(jié)論:
①;②;③;④≥;⑤若,且,
則.其中正確的結(jié)論有( )
A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,方格紙上每個(gè)小正方形的邊長均為1個(gè)單位長度,點(diǎn)A、B都在格點(diǎn)上(兩條網(wǎng)格線的交點(diǎn)叫格點(diǎn)).
(1)將線段AB向上平移兩個(gè)單位長度,點(diǎn)A的對應(yīng)點(diǎn)為點(diǎn)A1,點(diǎn)B的對應(yīng)點(diǎn)為點(diǎn)B1,請畫出平移后的線段A1B1;
(2)將線段A1B1繞點(diǎn)A1按逆時(shí)針方向旋轉(zhuǎn)90°,點(diǎn)B1的對應(yīng)點(diǎn)為點(diǎn)B2,請畫出旋轉(zhuǎn)后的線段A1B2;
(3)連接AB2、BB2,求△ABB2的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長為4,點(diǎn)E,F分別在AB,AD上,若CE=5,且∠ECF=45°,則CF的長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=﹣x2+bx+c的圖象與直線y=﹣x+1相交于A、B兩點(diǎn)(如圖),A點(diǎn)在y軸上,過點(diǎn)B作BC⊥x軸,垂足為C(﹣3,0).
(1)填空:b=_____,c=_____.
(2)點(diǎn)N是二次函數(shù)圖象上一點(diǎn)(點(diǎn)N在AB上方),過N作NP⊥x軸,垂足為點(diǎn)P,交AB于點(diǎn)M,求MN的最大值;
(3)在(2)的條件下,點(diǎn)N在何位置時(shí),BM與NC相互垂直平分?并求出所有滿足條件的N點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角三角形ABC中,∠ABC=90°,點(diǎn)D在BC的延長線上,且BD=AB,過B作BEAC,與BD的垂線DE交于點(diǎn)E,
(1)求證:△ABC≌△BDE
(2)三角形BDE可由三角形ABC旋轉(zhuǎn)得到,利用尺規(guī)作出旋轉(zhuǎn)中心O(保留作圖痕跡,不寫作法)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com