【題目】如圖,矩形ABCD中,AB=3,BC=4,點E是BC邊上一點,連接AE,把∠B沿AE折疊,使點B落在點B′處.當△CEB′為直角三角形時,BE的長為 .
【答案】 或3
【解析】解:當△CEB′為直角三角形時,有兩種情況:
①當點B′落在矩形內部時,如答圖1所示.
連結AC,
在Rt△ABC中,AB=3,BC=4,
∴AC= =5,
∵∠B沿AE折疊,使點B落在點B′處,
∴∠AB′E=∠B=90°,
當△CEB′為直角三角形時,只能得到∠EB′C=90°,
∴點A、B′、C共線,即∠B沿AE折疊,使點B落在對角線AC上的點B′處,
∴EB=EB′,AB=AB′=3,
∴CB′=5﹣3=2,
設BE=x,則EB′=x,CE=4﹣x,
在Rt△CEB′中,
∵EB′2+CB′2=CE2 ,
∴x2+22=(4﹣x)2 , 解得x= ,
∴BE= ;
②當點B′落在AD邊上時,如答圖2所示.
此時ABEB′為正方形,∴BE=AB=3.
綜上所述,BE的長為 或3.
故答案為: 或3.
當△CEB′為直角三角形時,有兩種情況:①當點B′落在矩形內部時,如答圖1所示.連結AC,先利用勾股定理計算出AC=5,根據(jù)折疊的性質得∠AB′E=∠B=90°,而當△CEB′為直角三角形時,只能得到∠EB′C=90°,所以點A、B′、C共線,即∠B沿AE折疊,使點B落在對角線AC上的點B′處,則EB=EB′,AB=AB′=3,可計算出CB′=2,設BE=x,則EB′=x,CE=4﹣x,然后在Rt△CEB′中運用勾股定理可計算出x.②當點B′落在AD邊上時,如答圖2所示.此時ABEB′為正方形.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在ABCD中,AC與BD相交于點O,E為OD的中點,連接AE并延長交DC于點F,則S△DEF:S△AOB的值為( )
A.1:3
B.1:5
C.1:6
D.1:11
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,正方形ABCD中,,繞點A順時針旋轉,它的兩邊長分別交CB、DC或它們的延長線于點MN,于點H.
如圖,當點A旋轉到時,請你直接寫出AH與AB的數(shù)量關系;
如圖,當繞點A旋轉到時,中發(fā)現(xiàn)的AH與AB的數(shù)量關系還成立嗎?如果不成立請寫出理由,如果成立請證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某市為了鼓勵居民節(jié)約用電,采用分段計費的方法按月計算每戶家庭的電費,分兩檔收費:第一檔是當月用電量不超過240度時實行“基礎電價”;第二檔是當用電量超過240度時,其中的240度仍按照“基礎電價”計費,超過的部分按照“提高電價”收費.設每個家庭月用電量為x 度時,應交電費為y 元.具體收費情況如折線圖所示,請根據(jù)圖象回答下列問題:
(1)“基礎電價”是____________元 度;
(2)求出當x>240 時,y與x的函數(shù)表達式;
(3)若紫豪家六月份繳納電費132元,求紫豪家這個月用電量為多少度?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形ABCD中,點E是邊BC的中點,直線EF交正方形外角的平分線于點F,交DC于點G,且AE⊥EF.
(1)當AB=2時,求GC的長;
(2)求證:AE=EF.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,點點P第1次向上跳動1個單位至點,緊接著第2次向左跳動2個單位至點,第3次向上跳動1個單位至點,第4次向右跳動3個單位至點,第5次又向上跳動1個單位至點,第6次向左跳動4個單位至點,照此規(guī)律,點P第100次跳動至點的坐標是
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形OABC的頂點A、C分別在x軸和y軸上,點B的坐標為(2,3).雙曲線y= (x>0)的圖象經過BC的中點D,且與AB交于點E,連接DE.
(1)求k的值及點E的坐標;
(2)若點F是OC邊上一點,且△FBC∽△DEB,求直線FB的解析式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△BC中,AC=BC,點D、E分別是邊AB、AC的中點.延長DE到點F,使DE=EF,得四邊形ADCF.若使四邊形ADCF是正方形,則應在△ABC中再添加一個條件為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小明同學在計算一個多邊形(每個內角小于180°)的內角和時,由于粗心少算了一個內角,
結果得到的總和是2018°,則少算了這個內角的度數(shù)為________.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com