【題目】如圖,A、B是圓O上的兩點,∠AOB=120°,C是AB弧的中點.

(1)求證:AB平分∠OAC;
(2)延長OA至P使得OA=AP,連接PC,若圓O的半徑R=1,求PC的長.

【答案】
(1)

證明:連接OC,

∵∠AOB=120°,C是AB弧的中點,

∴∠AOC=∠BOC=60°,

∵OA=OC,

∴△ACO是等邊三角形,

∴OA=AC,同理OB=BC,

∴OA=AC=BC=OB,

∴四邊形AOBC是菱形,

∴AB平分∠OAC


(2)

解:連接OC,

∵C為弧AB中點,∠AOB=120°,

∴∠AOC=60°,

∵OA=OC,

∴OAC是等邊三角形,

又∵OA=AP,

∴AP=AC,

∴∠APC=30°,

∴△OPC是直角三角形,


【解析】(1)連接OC,由∠AOB=120°,C是AB弧的中點,∠AOC=∠BOC=60°,即可證明△ACO是等邊三角形,同理可證△BCO是等邊三角形,即OA=OB=AC=BC,則四邊形AOBC是菱形,根據(jù)菱形的對角線平分一組對角,可得AB平分∠OAC;
(2)證△OPC是直角三角形即可求得.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀材料

如圖①,△ABC與△DEF都是等腰直角三角形,∠ACB=∠EDF=90°,且點D在AB邊上,AB,EF的中點均為O,連結(jié)BF,CD、CO,顯然點C,F(xiàn),O在同一條直線上,可以證明△BOF≌△COD,則BF=CD.
解決問題
(1)將圖①中的Rt△DEF繞點O旋轉(zhuǎn)得到圖②,猜想此時線段BF與CD的數(shù)量關(guān)系,并證明你的結(jié)論;
(2)如圖③,若△ABC與△DEF都是等邊三角形,AB、EF的中點均為O,上述(1)中的結(jié)論仍然成立嗎?如果成立,請說明理由;如不成立,請求出BF與CD之間的數(shù)量關(guān)系;

(3)如圖④,若△ABC與△DEF都是等腰三角形,AB,EF的中點均為0,且頂角∠ACB=∠EDF=α,請直接寫出 的值(用含α的式子表示出來)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O的弦BC長為8,點A是⊙O上一動點,且∠BAC=45°,點D,E分別是BC,AB的中點,則DE長的最大值是(

A.4
B.4
C.8
D.8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,△A1A2A3 , △A3A4A5 , △A5A6A7 , △A7A8A9 , …,都是等邊三角形,且點A1 , A3 , A5 , A7 , A9的坐標(biāo)分別為A1(3,0),A3(1,0),A5(4,0),A7(0,0),A9(5,0),依據(jù)圖形所反映的規(guī)律,則A100的坐標(biāo)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在矩形ABCD中, =a,點G,H分別在邊AB,DC上,且HA=HG,點E為AB邊上的一個動點,連接HE,把△AHE沿直線HE翻折得到△FHE.

(1)如圖1,當(dāng)DH=DA時,填空:∠HGA=度;
(2)如圖1,當(dāng)DH=DA時,若EF∥HG,求∠AHE的度數(shù),并求此時的最小值;
(3)如圖3,∠AEH=60°,EG=2BG,連接FG,交邊DC于點P,且FG⊥AB,G為垂足,求a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,點A在y軸上,點B的坐標(biāo)為(1,2),將△AOB沿x軸向右平移得到△A′O′B′,點B的對應(yīng)點B′恰好在函數(shù)y= (x>0)的圖象上,此時點A移動的距離為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下面材料: 小明遇到這樣兩個問題:

(1)如圖1,AB是⊙O的直徑,C是⊙O上一點,OD⊥AC,垂足為D,BC=﹣6,求OD的長;
(2)如圖2△ABC中,AB=6,AC=4,點D為BC的中點,求AD的取值范圍. 對于問題(1),小明發(fā)現(xiàn)根據(jù)垂徑定理,可以得出點D是AC的中點,利用三角形中位線定理可以解決;對于問題(2),小明發(fā)現(xiàn)延長AD到E,使DE=AD,連接BE,可以得到全等三角形,通過計算可以解決.

請回答:
問題(1)中OD長為;問題(2)中AD的取值范圍是
參考小明思考問題的方法,解決下面的問題:
(3)如圖3,△ABC中,∠BAC=90°,點D、E分別在AB、AC上,BE與CD相交于點F,AC=mEC,AB=2 EC,AD=nDB.
①當(dāng)n=1時,如圖4,在圖中找出與CE相等的線段,并加以證明;

②直接寫出 的值(用含m、n的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ABC=90°,AC的垂直平分線分別與AC、BC及AB的延長線交于點D、E、F,且BF=BC,⊙O是△BEF的外接圓,連接BD.
(1)求證:BD是⊙O的切線;
(2)求證:DEAC=BECE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線C1:y=ax2+bx+(a≠0)經(jīng)過點A(﹣1,0)和B(3,0).

(1)求拋物線C1的解析式,并寫出其頂點C的坐標(biāo);
(2)如圖1,把拋物線C1沿著直線AC方向平移到某處時得到拋物線C2 , 此時點A,C分別平移到點D,E處.設(shè)點F在拋物線C1上且在x軸的下方,若△DEF是以EF為底的等腰直角三角形,求點F的坐標(biāo);
(3)如圖2,在(2)的條件下,設(shè)點M是線段BC上一動點,EN⊥EM交直線BF于點N,點P為線段MN的中點,當(dāng)點M從點B向點C運(yùn)動時:①tan∠ENM的值如何變化?請說明理由;②點M到達(dá)點C時,直接寫出點P經(jīng)過的路線長.

查看答案和解析>>

同步練習(xí)冊答案