【題目】如圖坐標(biāo)系中,O(0,0),A(6,6),B(12,0),將△OAB沿直線CD折疊,使點(diǎn)A恰好落在線段OB上的點(diǎn)E處,若OE=,則AC:AD的值是( 。
A.1:2B.2:3C.6:7D.7:8
【答案】B
【解析】
過A作AF⊥OB于F,根據(jù)已知條件得到△AOB是等邊三角形,推出△CEO∽△EDB,根據(jù)相似三角形的性質(zhì)得到,求出BE=OB﹣OE=12﹣=,設(shè)CE=a,則CA=a,CO=12﹣a,ED=b,則AD=b,DB=12﹣b,于是得到12b=60a﹣5ab,48a=60b﹣5ab,兩式相減得到48a﹣12b=60b﹣60a,即可得到結(jié)論.
解:過A作AF⊥OB于F,如圖所示:
∵A(6,),B(12,0),
∴AF=,OF=6,OB=12,
∴BF=6,
∴OF=BF,
∴AO=AB,
∵tan∠AOB==,
∴∠AOB=60°,
∴△AOB是等邊三角形,
∴∠AOB=∠ABO=60°,
∵將△OAB沿直線CD折疊,使點(diǎn)A恰好落在線段OB上的點(diǎn)E處,
∴∠CED=∠OAB=60°,
∴∠OCE=∠DEB,
∴△CEO∽△EDB,
∴,
∵OE=,
∴BE=OB﹣OE=12﹣=,
設(shè)CE=a,則CA=a,CO=12﹣a,ED=b,則AD=b,DB=12﹣b,
則, ,
∴12b=60a﹣5ab①,48a=60b﹣5ab②,
②﹣①得:48a﹣12b=60b﹣60a,
∴,即AC:AD=2:3.
故選:B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,要在木里縣某林場(chǎng)東西方向的兩地之間修一條公路MN,已知點(diǎn)C周圍200 m范圍內(nèi)為原始森林保護(hù)區(qū),在MN上的點(diǎn)A處測(cè)得C在A的北偏東45°方向上,從A向東走600 m到達(dá)B處,測(cè)得C在點(diǎn)B的北偏西60°方向上.
(1)MN是否穿過原始森林保護(hù)區(qū)?為什么?(參考數(shù)據(jù): ≈1.732)
(2)若修路工程順利進(jìn)行,要使修路工程比原計(jì)劃提前5天完成,需將原定的工作效率提高25%,則原計(jì)劃完成這項(xiàng)工程需要多少天?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市對(duì)九年級(jí)學(xué)生進(jìn)行了一次學(xué)業(yè)水平測(cè)試,成績(jī)?cè)u(píng)定分A、B、C、D四個(gè)等第.為了解這次數(shù)學(xué)測(cè)試成績(jī)情況,相關(guān)部門從該市的農(nóng)村、縣鎮(zhèn)、城市三類群體的學(xué)生中共抽取2000名學(xué)生的數(shù)學(xué)成績(jī)進(jìn)行統(tǒng)計(jì)分析,相應(yīng)數(shù)據(jù)的統(tǒng)計(jì)圖表如下:
各類學(xué)生成績(jī)?nèi)藬?shù)比例統(tǒng)計(jì)表
等第 人數(shù) 類別 | A | B | C | D |
農(nóng)村 | 200 | 240 | 80 | |
縣鎮(zhèn) | 290 | 132 | 130 | |
城市 | 240 | 132 | 48 |
(注:等第A、B、C、D分別代表優(yōu)秀、良好、合格、不合格)
(1)請(qǐng)將上面表格中缺少的三個(gè)數(shù)據(jù)補(bǔ)充完整;
(2)若該市九年級(jí)共有15000名學(xué)生參加測(cè)試,試估計(jì)該市學(xué)生成績(jī)合格以上(含合格)的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀以下材料,并按要求完成相應(yīng)的任務(wù).
已知平面上兩點(diǎn),則所有符合且的點(diǎn)會(huì)組成一個(gè)圓.這個(gè)結(jié)論最先由古希臘數(shù)學(xué)家阿波羅尼斯發(fā)現(xiàn),稱阿氏圓.
阿氏圓基本解法:構(gòu)造三角形相似.
(問題)如圖1,在平面直角坐標(biāo)中,在軸,軸上分別有點(diǎn),點(diǎn)是平面內(nèi)一動(dòng)點(diǎn),且,設(shè),求的最小值.
阿氏圓的關(guān)鍵解題步驟:
第一步:如圖1,在上取點(diǎn),使得;
第二步:證明;第三步:連接,此時(shí)即為所求的最小值.
下面是該題的解答過程(部分):
解:在上取點(diǎn),使得,
又.
任務(wù):
將以上解答過程補(bǔ)充完整.
如圖2,在中,為內(nèi)一動(dòng)點(diǎn),滿足,利用中的結(jié)論,請(qǐng)直接寫出的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在銳角三角形ABC中,點(diǎn)D,E分別在邊AC,AB上,AG⊥BC于點(diǎn)G,AF⊥DE于點(diǎn)F,∠EAF=∠GAC.
(1)求證:△ADE∽△ABC;
(2)若AD=3,AB=5,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,BC是⊙O的直徑,D是劣弧的中點(diǎn)BD交AC于點(diǎn)E.
(1)求證:AD2=DEDB.
(2)若BC=5,CD=,求DE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,∠ABC的平分線BF分別與AC、AD交于點(diǎn)E、F.
(1)求證:AB=AF;
(2)當(dāng)AB=3,BC=4時(shí),求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面坐標(biāo)系中,正方形的位置如圖所示,點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為,延長(zhǎng)交軸于點(diǎn),作正方形,正方形的面積為______,延長(zhǎng)交軸于點(diǎn),作正方形,……按這樣的規(guī)律進(jìn)行下去,正方形的面積為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】知識(shí)改變世界,科技改變生活.導(dǎo)航裝備的不斷更新極大方便了人們的出行.如圖,某校組織學(xué)生乘車到黑龍灘(用C表示)開展社會(huì)實(shí)踐活動(dòng),車到達(dá)A地后,發(fā)現(xiàn)C地恰好在A地的正北方向,且距離A地13千米,導(dǎo)航顯示車輛應(yīng)沿北偏東60°方向行駛至B地,再沿北偏西37°方向行駛一段距離才能到達(dá)C地,求B、C兩地的距離.(參考數(shù)據(jù):sin53°≈,cos53°≈,tan53°≈)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com