【題目】如圖,在四邊形ABCD中,BD平分∠ABC,∠BAD=∠BDC=90°,E為BC的中點,AE與BD相交于點F.若BC=4,∠CBD=30°,則DF的長為____
【答案】
【解析】
先在Rt△BDC中,利用銳角三角函數(shù)求出BD,再利用直角三角形的性質(zhì)求出DE=BE=2,即:∠BDE=∠ABD,進而判斷出DE∥AB,再求出AB=3,即可得出結(jié)論.
在Rt△BDC中,BC=4,∠DBC=30°,
∴cos∠DBC=cos30°
∴BD=2,
連接DE,
∵∠BDC=90°,點E是BC中點,
∴DE=BE=CE=BC=2,
∵∠DCB=30°,
∴∠BDE=∠DBC=30°,
∵BD平分∠ABC,
∴∠ABD=∠DBC,
∴∠ABD=∠BDE,
∴DE∥AB,
∴△DEF∽△BAF,
∴,
在Rt△ABD中,∠ABD=30°,BD=2
∴AB=3,
∴,
∴,
∴DF=,
故答案是:
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題:如圖1,△ABC中,AB=a,∠ACB=α.如何用直尺和圓規(guī)作出點P,均使得∠APB=α?(不需解答)
嘗試:如圖2,△ABC中,AC=BC,∠ACB=90°.
(1)請用直角三角尺(僅可畫直角或直線)在圖2中畫出一個點P,使得∠APB=45°
(2)如圖3,若AC=BC=,以點A為原點,直線AB為x軸,過點A垂直于AB的直線為y軸建立平面直角坐標(biāo)系,直線y=(b≥0)交x軸于點M,交y軸與點N.
①當(dāng)b=7+時,請僅用圓規(guī)在射線MN上作出點P,使得∠APB=45°;
②請直接寫出射線MN上使得∠APB=45°或∠APB=135°時點P的個數(shù)及相應(yīng)的b的取值范圍;
③應(yīng)用:如圖4,△ABC中,AB=a,∠ACB=α,請用直尺和圓規(guī)作出點P,使得∠APB=α,且AP+BP最大,請簡要說明理由.(不寫作法,保留作圖痕跡)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b(k,b為常數(shù),k≠0)的圖象與反比例函數(shù)的圖象交于A、B兩點,且與x軸交于點C,與y軸交于點D,A點的橫坐標(biāo)與B點的縱坐標(biāo)都是3.
(1)求一次函數(shù)的表達式;
(2)求△AOB的面積;
(3)寫出不等式kx+b>﹣的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知⊙O的直徑AB=10,弦AC=6,∠BAC的平分線交⊙O于點D,過點D作DE⊥AC交AC的延長線于點E.
(1)求證:DE是⊙O的切線.
(2)求DE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AD是⊙O的直徑,AB為⊙O的弦,OP⊥AD,OP與AB的延長線交于點P,過B點的切線交OP于點C.
(1)求證:∠CBP=∠ADB;
(2)若OA=4,AB=2,求線段BP的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知拋物線y=x2+bx+c過A,B,C三點,點A的坐標(biāo)是(3,0),點C的坐標(biāo)是(0,-3),動點P在拋物線上.
(1)b =_________,c =_________,點B的坐標(biāo)為_____________;(直接填寫結(jié)果)
(2)是否存在點P,使得△ACP是以AC為直角邊的直角三角形?若存在,求出所有符合條件的點P的坐標(biāo);若不存在,說明理由;
(3)過動點P作PE垂直y軸于點E,交直線AC于點D,過點D作x軸的垂線.垂足為F,連接EF,當(dāng)線段EF的長度最短時,求出點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,AE平分∠BAC交⊙O于點E,交BC于點D,過點E做直線l∥BC.
(1)判斷直線l與⊙O的位置關(guān)系,并說明理由;
(2)若∠ABC的平分線BF交AD于點F,求證:BE=EF;
(3)在(2)的條件下,若DE=4,DF=3,求AF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形中,點是邊上的一點(不與、重合),點在的延長線上,且滿足,連接、,與邊交于點.
(1)求證:;
(2)如果,求證:.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com