【題目】解不等式組 ,并求出所有正整數(shù)解的和.

【答案】解:

由①得x≥1;

由②得x<4,

∴不等式組的解集是1≤x<4,

∴不等式組的所有正整數(shù)解的和為1+2+3=6.


【解析】先求出每一個不等式的解集,再確定不等式組的解集,然后求出所有正整數(shù)解的和即可。
【考點精析】解答此題的關(guān)鍵在于理解一元一次不等式組的解法的相關(guān)知識,掌握解法:①分別求出這個不等式組中各個不等式的解集;②利用數(shù)軸表示出各個不等式的解集;③找出公共部分;④用不等式表示出這個不等式組的解集.如果這些不等式的解集的沒有公共部分,則這個不等式組無解 ( 此時也稱這個不等式組的解集為空集 ),以及對一元一次不等式組的整數(shù)解的理解,了解使不等式組中的每個不等式都成立的未知數(shù)的值叫不等式組的解,一個不等式組的所有的解組成的集合,叫這個不等式組的解集(簡稱不等式組的解).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠C=90°,CA=12 cm,BC=12cm;動點P從點C開始沿CA以2 cm/s的速度向點A移動,動點Q從點A開始沿AB以4cm/s的速度向點B移動,動點R從點B開始沿BC以 2cm/s的速度向點C移動.如果P、Q、R分別從C、A、B同時移動,移動時間為t(0<t<6)s.

(1)∠CAB的度數(shù)是;
(2)以CB為直徑的⊙O與AB交于點M,當(dāng)t為何值時,PM與⊙O相切?
(3)寫出△PQR的面積S隨動點移動時間t的函數(shù)關(guān)系式,并求S的最小值及相應(yīng)的t值;
(4)是否存在△APQ為等腰三角形?若存在,求出相應(yīng)的t值;若不存在請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某服裝店用8000元購進(jìn)一批襯衫,以58/件的價格出售,很快售完,然后又用17600元購進(jìn)同款襯衫,購進(jìn)數(shù)量是第一次的2倍,購進(jìn)的單價比上一次每件多4元,服裝店仍按原售價58/件出售,并且全部售完.

1)該服裝店第一次購進(jìn)襯衫多少件?

2)將該服裝店兩次購進(jìn)襯衫看作一筆生意,那么這筆生意是盈利還是虧損?求出盈利(或虧損)多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一條東西走向河的一側(cè)有一村莊C,河邊原有兩個取水點AB,其中ABAC,由于某種原因,由CA的路現(xiàn)在已經(jīng)不通,某村為方便村民取水決定在河邊新建一個取水點HAH、B在一條直線上),并新修一條路CH,測得CB3千米,CH2.4千米,HB1.8千米.

1)問CH是否為從村莊C到河邊的最近路?(即問:CHAB是否垂直?)請通過計算加以說明;

2)求原來的路線AC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下列材料,然后解答后面的問題.

我們知道方程2x+3y=12有無數(shù)組解,但在實際生活中我們往往只需要求出其正整數(shù)解.例:由2x+3y=12,得,(x、y為正整數(shù))∴則有0x6.又為正整數(shù),則為正整數(shù).

23互質(zhì),可知:x3的倍數(shù),從而x=3,代入

2x+3y=12的正整數(shù)解為

問題:

1)請你寫出方程2x+y=5的一組正整數(shù)解:______

2)若為自然數(shù),則滿足條件的x值有______個;

A2B、3C、4D、5

3)七年級某班為了獎勵學(xué)習(xí)進(jìn)步的學(xué)生,購買了單價為3元的筆記本與單價為5元的鋼筆兩種獎品,共花費35元,問有幾種購買方案?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在單位為1的方格紙上,A1A2A3,A3A4A5A5A6A7,,都是斜邊在x軸上,斜邊長分別為24,6,的等直角三角形,若A1A2A3的頂點坐標(biāo)分別為A12,0),A211),A300),則依圖中所示規(guī)律,A2019的坐標(biāo)為(

A.(﹣1008,0B.(﹣10060C.2,﹣504D.1505

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平行四邊形中,點E是邊AB的中點,延長DECB的延長線于點F

1)求證:;

2)若,連接EC,則的度數(shù)是__________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知∠1=∠2,∠B=∠C,可推得ABCD.理由如下:

∵∠1=∠2   ),

且∠1=∠4   

∴∠2=∠4(等量代換)

CEBF   

∴∠   =∠3   

又∵∠B=∠C(已知)

∴∠3=∠B   

ABCD   ).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(2016甘肅省白銀市)如圖,在平面直角坐標(biāo)系中,ABC的頂點A(0,1),B(3,2),C(1,4)均在正方形網(wǎng)格的格點上.

(1)畫出ABC關(guān)于x軸的對稱圖形A1B1C1

(2)將A1B1C1沿x軸方向向左平移3個單位后得到A2B2C2,寫出頂點A2,B2C2的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案