【題目】已知關(guān)于x的一元二次方程x2+4x﹣k=0有兩個(gè)不相等的實(shí)數(shù)根.
(1)求k的取值范圍;
(2)請(qǐng)你在﹣5,﹣4,﹣3,1,2,3中選擇一個(gè)數(shù)作為k的值,使方程有兩個(gè)整數(shù)根,并求出方程的兩個(gè)整數(shù)根.

【答案】
(1)

解:∵方程x2+4x﹣k=0有兩個(gè)不相等的實(shí)數(shù)根,

∴△=42﹣4×1×(﹣k)=16+4k>0,

解得:k>﹣4,

∴k的取值范圍為k>﹣4;


(2)

解:當(dāng)k=﹣3時(shí),△=16+4k=4,

原方程為x2+4x+3=(x+1)(x+3)=0,

解得:x=﹣1或x=﹣3;

當(dāng)k=1時(shí),△=16+4k=20,

不是整數(shù);

當(dāng)k=2時(shí),△=16+4k=24,

不是整數(shù);

當(dāng)k=3時(shí),△=16+4k=28,

不是整數(shù).

∴當(dāng)取k=﹣3時(shí),方程的兩個(gè)整數(shù)根為﹣1或﹣3.


【解析】(1)根據(jù)方程有兩個(gè)不等實(shí)根結(jié)合根的判別式,可得出關(guān)于k的一元一次不等式,解不等式即可得出k的取值范圍;(2)結(jié)合(1)的結(jié)論,找出k的值,并驗(yàn)證k為這些數(shù)時(shí),何時(shí)方程的兩根為整數(shù),由此即可得出結(jié)論.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解求根公式的相關(guān)知識(shí),掌握根的判別式△=b2-4ac,這里可以分為3種情況:1、當(dāng)△>0時(shí),一元二次方程有2個(gè)不相等的實(shí)數(shù)根2、當(dāng)△=0時(shí),一元二次方程有2個(gè)相同的實(shí)數(shù)根3、當(dāng)△<0時(shí),一元二次方程沒(méi)有實(shí)數(shù)根.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一次函數(shù)y=kx+b圖象經(jīng)過(guò)點(diǎn)(1,3)和(4,6)

①試求;

②畫出這個(gè)一次函數(shù)圖象

③這個(gè)一次函數(shù)與y軸交點(diǎn)坐標(biāo)是(   

當(dāng)x 時(shí),y<0.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖(1),A、E、F、C在一條直線上,AE=CF,過(guò)E、F分別作DEAC,BFAC,若AB=CD,試證明BD平分EF,若將DEC的邊EC沿AC方向移動(dòng)變?yōu)閳D(2)時(shí),其余條件不變,上述結(jié)論是否成立?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,O為原點(diǎn),點(diǎn)B在x軸的正半軸上,D(0,8),將矩形OBCD折疊,使得頂點(diǎn)B落在CD邊上的P點(diǎn)處.

(1)如圖①,已知折痕與邊BC交于點(diǎn)A,若OD=2CP,求點(diǎn)A的坐標(biāo).
(2)若圖①中的點(diǎn) P 恰好是CD邊的中點(diǎn),求∠AOB的度數(shù).
(3)如圖②,在(I)的條件下,擦去折痕AO,線段AP,連接BP,動(dòng)點(diǎn)M在線段OP上(點(diǎn)M與P,O不重合),動(dòng)點(diǎn)N在線段OB的延長(zhǎng)線上,且BN=PM,連接MN交PB于點(diǎn)F,作ME⊥BP于點(diǎn)E,試問(wèn)當(dāng)點(diǎn)M,N在移動(dòng)過(guò)程中,線段EF的長(zhǎng)度是否發(fā)生變化?若變化,說(shuō)明理由;若不變,求出線段EF的長(zhǎng)度(直接寫出結(jié)果即可

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知A(2 ,2)、B(2 ,1),將△AOB繞著點(diǎn)O逆時(shí)針旋轉(zhuǎn),使點(diǎn)A旋轉(zhuǎn)到點(diǎn)A′(﹣2 ,2 )的位置,則圖中陰影部分的面積為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線y=2x與反比例函數(shù)y= (k≠0,x>0)的圖象交于點(diǎn)A(1,a),B是反比例函數(shù)圖象上一點(diǎn),直線OB與x軸的夾角為α,tanα=

(1)求k的值.
(2)求點(diǎn)B的坐標(biāo).
(3)設(shè)點(diǎn)P(m,0),使△PAB的面積為2,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】光明中學(xué)八年級(jí)甲、乙、丙三個(gè)班中,每班的學(xué)生人數(shù)都為40名,某次數(shù)學(xué)考試的成績(jī)統(tǒng)計(jì)如圖:(每組分?jǐn)?shù)含最小值,不含最大值)

丙班數(shù)學(xué)成績(jī)頻數(shù)統(tǒng)計(jì)表

分?jǐn)?shù)

50~60

60~70

70~80

80~90

90~100

人數(shù)

1

4

15

11

9

 根據(jù)上圖及統(tǒng)計(jì)表提供的信息,則80~90分這一組人數(shù)最多的班是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在長(zhǎng)度為1個(gè)單位長(zhǎng)度的小正方形組成的正方形中,點(diǎn)A、B、C在小正方形的頂點(diǎn)上.

(1)在圖中畫出與ABC關(guān)于直線l成軸對(duì)稱的AB′C′;

(2)三角形ABC的面積為   ;

(3)在直線l上找一點(diǎn)P,使PB+PC的長(zhǎng)最短.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知一次函數(shù)

為何值時(shí),yx的增大而減?

為何值時(shí),直線與y軸的交點(diǎn)在x軸下方?

為何值時(shí),直線位于第二、三、四象限?

查看答案和解析>>

同步練習(xí)冊(cè)答案