【題目】在△ABC中,AB=AC,BC=8,D為邊AC的中點.
(1)如圖1,過點D作DE⊥BC,垂足為點E,求線段CE的長;
(2)連接BD,作線段BD的垂直平分線分別交邊BC、BD、AB于點P、O、Q.
①如圖2,當∠BAC=90°時,求BP的長;
②如圖3,設(shè)tan∠ABC=x,BP=y,求y與x之間的函數(shù)表達式和tan∠ABC的最大值.
【答案】(1) ;(2)①;② ;tan∠ABC有最大值為
【解析】
(1)過點A作AH⊥BC交BC于點H,利用等腰三角形三線合一和平行線分線段成比例定理即可解決問題;
(2)①過點D作DH⊥BC交BC于點H,設(shè),在 中利用勾股定理即可求解;
②過點D作DH⊥BC交BC于點H,同樣在在 中利用勾股定理即可表示出y與x之間的函數(shù)表達式,再根據(jù)當y有最大值時,x也有最大值,即tan∠ABC有最大值即可求解.
(1)如圖,過點A作AH⊥BC交BC于點H
∵, BC=8
∴
∵
∴
∵D為邊AC的中點,
∴E為邊CH的中點
∴
(2)①過點D作DH⊥BC交BC于點H
∵PQ垂直平分BD
∴BP=PD
∵∠BAC=90°,AB=AC
∴
∴
設(shè),則,
在 中,
解得 ,即
②過點D作DH⊥BC交BC于點H
∵PQ垂直平分BD
∴BP=PD
∵,tan∠ABC=tan∠ACB= x,BP=y
∴
在 中,
∴
由得,
∴當y有最大值時,x也有最大值,即tan∠ABC有最大值.
∴當時,
解得 或(舍去)
∴tan∠ABC有最大值為
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線中,函數(shù)值y與自變量之間的部分對應(yīng)關(guān)系如下表:
… | 0 | 1 | … | ||||
y | … | 0 | … |
(1)求該拋物線的表達式;
(2)如果將該拋物線平移,使它的頂點移到點M(2,4)的位置,那么其平移的方法是____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲乙兩名同學(xué)做摸球游戲,他們把三個分別標有1,2,3的大小和形狀完全相同的小球放在一個不透明的口袋中.
(1)求從袋中隨機摸出一球,標號是1的概率;
(2)從袋中隨機摸出一球后放回,搖勻后再隨機摸出一球,若兩次摸出的球的標號之和為偶數(shù)時,則甲勝;若兩次摸出的球的標號之和為奇數(shù)時,則乙勝;試分析這個游戲是否公平?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)的圖象與x軸交于A(﹣3,0)和B(1,0)兩點,交y軸于點C(0,3),點C,D是二次函數(shù)圖象上的一對對稱點,一次函數(shù)的圖象過點B,D,交y軸為E.
(1)求二次函數(shù)的解析式;
(2)求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)的圖象如圖所示,則下列結(jié)論中正確的是( )
A.
B. 當時,隨的增大而減小
C.
D. 是關(guān)于的方程的一個根
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有兩把不同的鎖和四把不同的鑰匙,其中兩把鑰匙恰好分別能打開這兩把鎖,其余的鑰匙不能打開這兩把鎖.現(xiàn)在任意取出一把鑰匙去開任意一把鎖.
(1)請用列表或畫樹狀圖的方法表示出上述試驗所有可能結(jié)果;
(2)求一次打開鎖的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象的頂點在第一象限,且過點(0,1)和(﹣1,0).下列結(jié)論:①ab<0,②b2>4a,③0<a+b+c<2,④0<b<1,⑤當x>﹣1時,y>0,其中正確結(jié)論的個數(shù)是
A.5個 B.4個 C.3個 D.2個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=x2-4x-3,下列說法中正確的是( )
A.該函數(shù)圖象的開口向下B.該函數(shù)圖象的頂點坐標是(-2,-7)
C.當x<0時,y隨x的增大而增大D.該函數(shù)圖象與x軸有兩個不同的交點,且分布在坐標原點兩側(cè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線與軸交于點,與軸交于點,拋物線與直線交于,兩點,點是拋物線的頂點.
(1)求拋物線的解析式;
(2)點是直線上方拋物線上的一個動點,其橫坐標為,過點作軸的垂線,交直線于點,當線段的長度最大時,求的值及的最大值.
(3)在拋物線上是否存在異于、的點,使中邊上的高為,若存在求出點的坐標;若不存在請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com