【題目】如圖,已知函數(shù)y=ax2+bx+c(a≠0),有下列四個(gè)結(jié)論:①abc>0;②4a+2b+c>0;③3a+c<0;④a+b≥m(am+b),其中正確的有( )
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)
【答案】C
【解析】解:①拋物線開(kāi)口方向向下,則a<0.拋物線對(duì)稱(chēng)軸在y軸的右側(cè),則a、b異號(hào),所以ab<0.
又∵拋物線與y軸交于正半軸,則c>0,
∴abc<0,故①錯(cuò)誤;②如圖所示,當(dāng)x=0時(shí),y>0,則根據(jù)拋物線的對(duì)稱(chēng)性知,當(dāng)x=2時(shí),y>0,即4a+2b+c>0.
故②正確;③如圖所示,∵當(dāng)x=﹣1時(shí),y<0,對(duì)稱(chēng)軸x=﹣ =1,
∴b=﹣2a,則﹣3a﹣c=﹣(a﹣b+c)>0,即﹣3a﹣c>0,
即3a+c<0,故③正確;④⑤∵x=1時(shí),y=a+b+c(最大值),
x=m時(shí),y=am2+bm+c,
∵m≠1的實(shí)數(shù),
∴a+b+c>am2+bm+c,
∴a+b>m(am+b)成立.
∴④正確.
綜上所述,正確的結(jié)論有3個(gè).
故選:C.
【考點(diǎn)精析】本題主要考查了二次函數(shù)圖象以及系數(shù)a、b、c的關(guān)系的相關(guān)知識(shí)點(diǎn),需要掌握二次函數(shù)y=ax2+bx+c中,a、b、c的含義:a表示開(kāi)口方向:a>0時(shí),拋物線開(kāi)口向上; a<0時(shí),拋物線開(kāi)口向下b與對(duì)稱(chēng)軸有關(guān):對(duì)稱(chēng)軸為x=-b/2a;c表示拋物線與y軸的交點(diǎn)坐標(biāo):(0,c)才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】荊州市某水產(chǎn)養(yǎng)殖戶(hù)進(jìn)行小龍蝦養(yǎng)殖.已知每千克小龍蝦養(yǎng)殖成本為6元,在整個(gè)銷(xiāo)售旺季的80天里,銷(xiāo)售單價(jià)p(元/千克)與時(shí)間第t(天)之間的函數(shù)關(guān)系為: ,日銷(xiāo)售量y(千克)與時(shí)間第t(天)之間的函數(shù)關(guān)系如圖所示:
(1)求日銷(xiāo)售量y與時(shí)間t的函數(shù)關(guān)系式?
(2)哪一天的日銷(xiāo)售利潤(rùn)最大?最大利潤(rùn)是多少?
(3)該養(yǎng)殖戶(hù)有多少天日銷(xiāo)售利潤(rùn)不低于2400元?
(4)在實(shí)際銷(xiāo)售的前40天中,該養(yǎng)殖戶(hù)決定每銷(xiāo)售1千克小龍蝦,就捐贈(zèng)m(m<7)元給村里的特困戶(hù).在這前40天中,每天扣除捐贈(zèng)后的日銷(xiāo)售利潤(rùn)隨時(shí)間t的增大而增大,求m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,拋物線y=x2﹣4x+3與x軸交于點(diǎn)A、B(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C.
(1)求直線BC的表達(dá)式;
(2)垂直于y軸的直線l與拋物線交于點(diǎn)P(x1 , y1),Q(x2 , y2),與直線BC交于點(diǎn)N(x3 , y3),若x1<x2<x3 , 結(jié)合函數(shù)的圖象,求x1+x2+x3的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在等邊△ABC中,D是邊AC上一點(diǎn),連接BD,將△BCD繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°,得到△BAE,連接ED,若BC=5,BD=4.則下列四個(gè)結(jié)論:①AE∥BC;②∠ADE=∠BDC;③△BDE是等邊三角形;④△AED的周長(zhǎng)是9.其中正確的結(jié)論是(把你認(rèn)為正確結(jié)論的序號(hào)都填上.)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若拋物線y=ax2+bx+c與x軸交于A,B兩點(diǎn),與y軸交于正半軸C點(diǎn),且AC=20,BC=15,∠ACB=90°,則此拋物線的解析式為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,坐標(biāo)平面上,二次函數(shù)y=﹣x2+4x﹣k的圖形與x軸交于A、B兩點(diǎn),與y軸交于C點(diǎn),其頂點(diǎn)為D,且k>0.若△ABC與△ABD的面積比為1:4,則k值為何?( )
A.1
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,將△ABC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)40°后,得到△AB′C′,且C′在邊BC上,則∠AC′C的度數(shù)為( )
A.50°
B.60°
C.70°
D.80°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)C為線段AB上一點(diǎn),△ACM、△CBN是等邊三角形,直線AN、MC交于點(diǎn)E,直線BM、CN交于點(diǎn)F.
(1)求證:AN=MB;
(2)求證:△CEF為等邊三角形;
(3)將△ACM繞點(diǎn)C按逆時(shí)針?lè)较蛐D(zhuǎn)90°,其它條件不變,在圖②中補(bǔ)出符合要求的圖形,并判斷(1)題中的結(jié)論是否依然成立,說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com