【題目】如圖,△ABC和△EBD中,∠ABC=∠DBE=90°,AB=CB,BE=BD,連接AE,CD,AECD交于點M,AEBC交于點N.

(1)求證:AE=CD;

(2)求證:AE⊥CD;

(3)連接BM,有以下兩個結論:①BM平分∠CBE;②MB平分∠AMD.其中正確的有   (請寫序號,少選、錯選均不得分).

【答案】(1)證明見解析;(2)證明見解析;(3)②.

【解析】

(1)欲證明AE=CD,只要證明ABE≌△CBD;

(2)由ABE≌△CBD,推出BAE=BCD,由∠NMC=180°-BCD-CNM,ABC=180°-BAE-ANB,又∠CNM=ABC,ABC=90°,可得∠NMC=90°;

(3)結論:②;作BKAEK,BJCDJ.理由角平分線的判定定理證明即可.

(1)證明:∵∠ABC=DBE,

∴∠ABC+CBE=DBE+CBE,

即∠ABE=CBD,

ABECBD中,

,

∴△ABE≌△CBD,

AE=CD.

(2)∵△ABE≌△CBD,

∴∠BAE=BCD,

∵∠NMC=180°-BCD-CNM,ABC=180°-BAE-ANB,

又∠CNM=ABC,

∵∠ABC=90°,

∴∠NMC=90°,

AECD.

(3)結論:②

理由:作BKAEK,BJCDJ.

∵△ABE≌△CBD,

AE=CD,SABE=SCDB,

AEBK=CDBJ,

BK=BJ,∵作BKAEK,BJCDJ,

BM平分∠AMD.

不妨設①成立,則ABM≌△DBM,則AB=BD,顯然可不能,故①錯誤.

故答案為②

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,OABC是一張放在平面直角坐標系中的矩形紙片,O為原點,點A在x軸的正半軸上,點C在y軸的正半軸上,OA=10,OC=8.在OC邊上取一點D,將紙片沿AD翻折,使點O落在BC邊上的點E處,求D,E兩點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖2,AB=AC,BEACE,CFABF,BE,CF交于D,則以下結論:①△ABE≌△ACF;②△BDF≌△CDE;③點D在∠BAC的平分線上.正確的是( 。

A. B. C. ①② D. ①②③

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知△ABC是等腰三角形,AB=AC.
(1)特殊情形:如圖1,當DE∥BC時,有DBEC.(填“>”,“<”或“=”)

(2)發(fā)現(xiàn)探究:若將圖1中的△ADE繞點A順時針旋轉α(0°<α<180°)到圖2位置,則(1)中的結論還成立嗎?若成立,請給予證明;若不成立,請說明理由.

(3)拓展運用:如圖3,P是等腰直角三角形ABC內(nèi)一點,∠ACB=90°,且PB=1,PC=2,PA=3,求∠BPC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點A,B,C,D在⊙O上,點O在∠D的內(nèi)部,四邊形OABC為平行四邊形,則∠OAD+∠OCD=(
A.55°
B.60°
C.65°
D.70°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,Rt△ABC的三個頂點分別是A(﹣3,2),B(0,4),C(0,2).

(1)將△ABC以點O為旋轉中心旋轉90°,請畫出旋轉后的△A′B′C′;
(2)在x軸上有一點P,使得PA+PB的值最小,請直接寫出點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】《九章算術》是我國古代數(shù)學的經(jīng)典著作,書中有一個問題:“今有黃金九枚,白銀一十一枚,稱之重適等.交易其一,金輕十三兩.問金、銀一枚各重幾何?”.意思是:甲袋中裝有黃金9枚(每枚黃金重量相同),乙袋中裝有白銀11枚(每枚白銀重量相同),稱重兩袋相等.兩袋互相交換1枚后,甲袋比乙袋輕了13兩(袋子重量忽略不計).問黃金、白銀每枚各重多少兩?設每枚黃金重x兩,每枚白銀重y兩,根據(jù)題意得( 。

A. B.

C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】20028月在北京召開的國際數(shù)學家大會會標取材于我國古代數(shù)學家趙爽的《勾股圓方圖》,它是由四個全等的直角三角形與中間的小正方形拼成的一個大正方形(如圖).如果大正方形的面積是100,小正方形的面積是4,直角三角形較短的直角邊長為,較長的直角邊長為,那么的值是_________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD中,P是對角線BD上一點,連接AP、,BFAPH,CP、BH延長線分別交AD邊于點E、F。

(1)求證:∠DAP=DCE

(2)求證:AE=FD

(3)猜想∠APE與∠FBD的數(shù)量關系,并說明理由.

查看答案和解析>>

同步練習冊答案