【題目】如圖,正△ABC的邊長為2,以BC邊上的高AB1為邊作正△AB1C1 , △ABC與△AB1C1公共部分的面積記為S1;再以正△AB1C1邊B1C1上的高AB2為邊作正△AB2C2 , △AB1C1與△AB2C2公共部分的面積記為S2;…,以此類推,則Sn= . (用含n的式子表示)
科目:初中數學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx經過A(2,0),B(3,﹣3)兩點,拋物線的頂點為C,動點P在直線OB上方的拋物線上,過點P作直線PM∥y軸,交x軸于M,交OB于N,設點P的橫坐標為m.
(1)求拋物線的解析式及點C的坐標;
(2)當△PON為等腰三角形時,點N的坐標為;當△PMO∽△COB時,點P的坐標為;(直接寫出結果)
(3)直線PN能否將四邊形ABOC分為面積比為1:2的兩部分?若能,請求出m的值;若不能,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】定義:若點P(a,b)在函數y= 的圖象上,將以a為二次項系數,b為一次項系數構造的二次函數y=ax2+bx稱為函數y= 的一個“派生函數”.例如:點(2, )在函數y= 的圖象上,則函數y=2x2+ 稱為函數y= 的一個“派生函數”.現給出以下兩個命題: ①存在函數y= 的一個“派生函數”,其圖象的對稱軸在y軸的右側
②函數y= 的所有“派生函數”,的圖象都經過同一點,下列判斷正確的是( )
A.命題①與命題②都是真命題
B.命題①與命題②都是假命題
C.命題①是假命題,命題②是真命題
D.命題①是真命題,命題②是假命題
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC中,AB=AC,∠A=40°,延長AC到D,使CD=BC,點P是△ABD的內心,則∠BPC=( )
A.105°
B.110°
C.130°
D.145°
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】對于鈍角α,定義它的三角函數數值如下: sinα=sin(180°﹣α),cosα=﹣cos(180°﹣α).
(1)求sin135°,cos150°的值;
(2)若一個三角形的三個內角的比為1:1:4,A,B是這個三角形的兩個頂點,且∠A≤∠B,sinA,cosB是方程4x2﹣mx﹣1=0的兩個不相等的實數根,求m值及∠A,∠B的大小.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為響應推進中小學生素質教育的號召,某校決定在下午15點至16點開設以下選修課:音樂史、管樂、籃球、健美操、油畫.為了解同學們的選課情況,某班數學興趣小組從全校三個年級中各調查一個班級,根據相關數據,繪制如下統(tǒng)計圖.
(1)請根據以上信息,直接補全條形統(tǒng)計圖(圖1)和扇形統(tǒng)計圖(圖2);
(2)若初一年級有180人,請估算初一年級中有多少學生選修音樂史?
(3)若該校共有學生540人,請估算全校有多少學生選修籃球課?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某大型文體活動需招募一批學生作為志愿者參與服務,已知報名的男生有420人,女生有400人,他們身高均在150≤x<175之間,為了解這些學生身高的具體分別情況,從中隨機抽取若干學生進行抽樣調查,抽取的樣本中,男生比女生多2人,利用所得數據繪制如下統(tǒng)計圖表:
組別 | 身高(cm) |
A | 150≤x<155 |
B | 155≤x<160 |
C | 160≤x<165 |
D | 165≤x<170 |
E | 170≤x<175 |
根據圖表提供的信息,有下列幾種說法
①估計報名者中男生身高的眾數在D組;
②估計報名者中女生身高的中位數在B組;
③抽取的樣本中,抽取女生的樣本容量是38;
④估計身高在160cm至170cm(不含170cm)的學生約有400人
其中合理的說法是( )
A.①②
B.①④
C.②④
D.③④
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在正方形ABCD中,點E在AB邊上,點F在BC邊的延長線上,且AE=CF
(1)求證:△AED≌△CFD;
(2)將△AED按逆時針方向至少旋轉多少度才能與△CFD重合,旋轉中心是什么?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直線m,n的夾角為35°,相交于點O,
(1)作出△ABC關于直線m的對稱△DEF;
(2)作出△DEF關于直線n的對稱△PQR;
(3)△PQR還可以由△ABC經過一次怎樣的變換得到.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com