【題目】如圖,在等邊ABC中,點E在線段AC上,連接BE,點D在直線BC上,且CE=CD,連接ED、AD,點FBE的中點,連接FA、FD

1)若CD=6BC=10,求BEC的面積;

2)當(dāng)AE=CE時,求證:AD=2AF

【答案】1;(2)見解析

【解析】

1)作EHBCH.在直角三角形ECH中求出EH,即可解決問題.
2)如圖1過點BBGACAF的延長線于G,先證明BFGEFA,再證明ABG≌△ACD,即可解決問題.

1)如圖,作EHBCH


∴∠EHC=90°

∵△ABC是等邊三角形
∴∠ECH=60°

∴∠HEC=30°
CE=CD=6,
,

SBEC=BCEH=

2)如圖,過點BBGACAF的延長線于G,


∴∠G=EAF,∠CBG=ACB=60°
∴∠ABG=ABC+CBG=120°=ACD
∵點FBE中點
BF=EF
BFGEFA


∴△BFG≌△EFA
BG=AEAF=FG
AE=EC=CD
BG=CD
ABGACD中,
∴△ABG≌△ACD
AD=AG=2AF

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,對于平面內(nèi)的點P和兩條曲線、給出如下定義:若從點P任意引出一條射線分別與、交于、,總有是定值,我們稱曲線“曲似”,定值為“曲似比”,點P為“曲心”.

例如:如圖2,以點為圓心,半徑分別為都是常數(shù)的兩個同心圓、,從點任意引出一條射線分別與兩圓交于點M、N,因為總有是定值,所以同心圓曲似,曲似比為,“曲心”為

在平面直角坐標(biāo)系xOy中,直線與拋物線分別交于點A、B,如圖3所示,試判斷兩拋物線是否曲似,并說明理由;

的條件下,以O為圓心,OA為半徑作圓,過點Bx軸的垂線,垂足為C,是否存在k值,使與直線BC相切?若存在,求出k的值;若不存在,說明理由;

的條件下,若將“”改為“”,其他條件不變,當(dāng)存在與直線BC相切時,直接寫出m的取值范圍及km之間的關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,,若點從點出發(fā)以/的速度向點運動,點從點出發(fā)以/的速度向點運動,設(shè)分別從點、同時出發(fā),運動的時間為

1)求、的長(用含的式子表示)

2)當(dāng)為何值時,是以為底邊的等腰三角形?

3)當(dāng)為何值時,//?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,反比例函數(shù)y=(x<0)的圖象經(jīng)過點A(﹣2,2),過點A作ABy軸,垂足為B,在y軸的正半軸上取一點P(0,t),過點P作直線OA的垂線l,以直線l為對稱軸,點B經(jīng)軸對稱變換得到的點B'在此反比例函數(shù)的圖象上,則t的值是(。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解某校學(xué)生的課余興趣愛好情況,某調(diào)查小組設(shè)計了“閱讀”、“打球”、“書法”和“舞蹈”四個選項,用隨機抽樣的方法調(diào)查了該校部分學(xué)生的課余興趣愛好情況(每個學(xué)生必須選一項且只能選一項),并根據(jù)調(diào)查結(jié)果繪制了如圖統(tǒng)計圖:

根據(jù)統(tǒng)計圖所提供的倍息,解答下列問題:

(1)本次抽樣調(diào)查中的學(xué)生人數(shù)是多少人;

(2 )補全條形統(tǒng)計圖;

(3)若該校共有2000名學(xué)生,請根據(jù)統(tǒng)計結(jié)果估計該校課余興趣愛好為“打球”的學(xué)生人數(shù);

(4)現(xiàn)有愛好舞蹈的兩名男生兩名女生想?yún)⒓游璧干纾荒苓x兩名學(xué)生,請你用列表或畫樹狀圖的方法,求出正好選到一男一女的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在半圓O中,AB是直徑,AB=13,點C是半圓O上一點,AC=12,弦AD平分∠BAC,則sinDAB=_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等腰中,,邊上的中點,點,分別是邊,上的動點,點從頂點沿方向作勻速運動,點從從頂點沿方向同時出發(fā),且它們的運動速度相同,連接,

1)求證:

2)判斷線段的位置及數(shù)量關(guān)系,并說明理由.

3)在運動過程中,的面積之和是否為定值?若是,請求出這個定值;若不是,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a≠0)的部分圖象如圖所示,圖象過點(﹣1,0),對稱軸為直線x=2,下列結(jié)論:(1)4a+b=0;(2)9a+c>3b;(3)8a+7b+2c>0;(4)若點A(﹣3,y1)、點B(﹣,y2)、點C(,y3)在該函數(shù)圖象上,則y1<y3<y2;(5)若方程a(x+1)(x﹣5)=﹣3的兩根為x1和x2,且x1<x2,則x1<﹣1<5<x2.其中正確的結(jié)論有( 。

A. 2個 B. 3個 C. 4個 D. 5個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y=ax2+cx軸交于A、B兩點,頂點為C,點P在拋物線上,且P(1,﹣3),B(4,0)

(1)點A的坐標(biāo)是   ;

(2)求該拋物線的解析式;

(3)直接寫出該拋物線的頂點C的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案