【題目】已知雙曲線與在第一象限內(nèi)交于兩點,,則扇形的面積是__________.
【答案】
【解析】
設⊙O的半徑OA=OB=r,連接AB,作直線y=x,與AB交于點C,過A作AD⊥y軸于點D,過B作BE⊥x軸于點E,過A作AF⊥OB于點F.由圓與雙曲線的對稱性得△AOD≌△AOC≌△BOC≌△BOE,進而由反比例函數(shù)的比例系數(shù)的幾何意義得△AOB的面積,再由三角形的面積公式求得圓的半徑,最后由扇形的面積公式求得結果.
設⊙O的半徑OA=OB=r,連接AB,作直線y=x,與AB交于點C,過A作AD⊥y軸于點D,過B作BE⊥x軸于點E,過A作AF⊥OB于點F.
∵⊙O在第一象限關于y=x對稱,也關于y=x對稱,
∴∠AOC=∠BOC,OC⊥AB,∠AOD=∠BOE,
∵∠AOB=45°,
∴∠AOD=∠AOC=∠BOC=∠BOE=22.5°,
由對稱性知,△AOD≌△AOC≌△BOC≌△BOE,
由反比例函數(shù)的幾何意義知,S△AOD=S△BOE=×4=2,
∴S△AOC=S△BOC=2,
∴S△AOB=2+2=4,
∵∠AOB=45°,
∴OA=AF=OF
∴AF=OF=OA=r,
∵S△AOB=OBAF,
∴4=r×r,
∴r2=8,
∴S扇形OAB==
故答案為:.
科目:初中數(shù)學 來源: 題型:
【題目】一天,小戰(zhàn)和同學們一起到操場測量學校旗桿高度,他們首先在斜坡底部C地測得旗桿頂部A的仰角為45°,然后上到斜坡頂部D點處再測得旗桿頂部A點仰角為37°(身高忽略不計).已知斜坡CD坡度i=1:2.4,坡長為2.6米,旗桿AB所在旗臺高度EF為1.4米,旗臺底部、臺階底部、操場在同一水平面上.則請問旗桿自身高度AB為( 。┟祝
(參考數(shù)據(jù):sin37°≈0.6,cos37°≈0.8,tan37°≈0.75)
A.10.2B.9.8C.11.2D.10.8
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】觀察下列各式規(guī)律:① 52-22=3×7;②72-42=3×11;③ 92-62=3×11;…;根據(jù)上面等式的規(guī)律:
(1)寫出第6個和第n個等式;
(2)證明你寫的第n個等式的正確性.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知直角三角形紙片的兩直角邊AC與BC的比為3:4,首先將△ABC如圖1所示折疊,使點C落在AB上,折痕為BD,然后將△ABD如圖2所示折疊,使點B與點D重合,折痕為EF,則sin∠DEA的值為( 。
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】2019年第七屆世界軍人運動會(7thCISMMilitaryWorldGames)于2019年10月18日至27日在中國武漢舉行,這是中國第一次承辦綜合性國際軍事賽事,也是繼北京奧運會后,中國舉辦的規(guī)模最大的國際體育盛會.某射擊運動員在一次訓練中射擊了10次,成績?nèi)鐖D所示.下列結論中不正確的有( )個
①眾數(shù)是8;②中位數(shù)是8;③平均數(shù)是8;④方差是1.6.
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】新冠疫情期間,某醫(yī)藥器材經(jīng)銷商計劃同時購進一批甲、乙兩種型號的口罩,若購進2箱甲型口罩和1箱乙型口罩,共需要資金2800元;若購進3箱甲型口罩和2箱乙型口罩,共需要資金4600元.
(1)求甲、乙型號口罩每箱的進價為多少元?
(2)該醫(yī)藥器材經(jīng)銷商計劃購進甲、乙兩種型號的口罩用于銷售,預汁用不多于1.8萬元且不少于1.74萬元的資金購進這兩種型號口罩共20箱,請問有幾種進貨方案?并寫出具體的進貨方案;
(3)若銷售一箱甲型口罩,利潤率為40%,乙型口罩的售價為每箱1280元.為了促銷,公司決定每售出一箱乙型口罩,返還顧客現(xiàn)金元,而甲型口罩售價不變,要使(2)中所有方案獲利相同,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,、是兩座現(xiàn)代化城市,是一個古城遺址,城在城的北偏東,在城的北偏西,城在城的正東方向,且城與城相距120千米,現(xiàn)在、兩城市修建一條筆直的高速公路.
(1)請你計算公路的長度(結果保留根號);
(2)若以為圓心,以60千米為半徑的圓形區(qū)域內(nèi)為古跡和地下文物保護區(qū),請你分析公路會不會穿越這個保護區(qū),并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,二次函數(shù)的圖象與x軸交于A、B兩點,B點的坐標為(3,0),與y軸交于點C(0,-3),點P是直線BC下方拋物線上的一個動點.
(1)求二次函數(shù)解析式;
(2)連接PO,PC,并將△POC沿y軸對折,得到四邊形.是否存在點P,使四邊形為菱形?若存在,求出此時點P的坐標;若不存在,請說明理由;
(3)當點P運動到什么位置時,四邊形ABPC的面積最大?求出此時P點的坐標和四邊形ABPC的最大面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com