【題目】若一次函數(shù)y=kx+1(k為常數(shù),k≠0)的圖象經(jīng)過第一、二、三象限,則k的取值范圍是_________

【答案】k>0

【解析】分析:根據(jù)一次函數(shù)圖象所經(jīng)過的象限確定k的符號.

詳解:∵一次函數(shù)y=kx+1(k為常數(shù),k≠0)的圖象經(jīng)過第一、二、三象限,
∴k>0.
故填:k>0.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知在正方形網(wǎng)格中,每個小方格都是邊長為1的正方形,A和B兩點(diǎn)在小方格的頂點(diǎn)上,位置如圖所示,點(diǎn)C也在小方格的頂點(diǎn)上,且以A,B,C為頂點(diǎn)的三角形的面積為1個平方單位,則C點(diǎn)的個數(shù)為( ).
A.3個
B.4個
C.5個
D.6個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的一元二次方程(x12+m0有實(shí)數(shù)根,則m的取值范圍是(  )

A.m≥0B.m≤0C.m0D.m0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=900,AC=6,BC=8.動點(diǎn)M從點(diǎn)A出發(fā),以每秒1個單位長度的速度沿AB向點(diǎn)B勻速運(yùn)動;同時(shí),動點(diǎn)N從點(diǎn)B出發(fā),以每秒3個單位長度的速度沿BA向點(diǎn)A勻速運(yùn)動.過線段MN的中點(diǎn)G作邊AB的垂線,垂足為點(diǎn)G,交△ABC的另一邊于點(diǎn)P,連接PM、PN,當(dāng)點(diǎn)N運(yùn)動到點(diǎn)A時(shí),M、N兩點(diǎn)同時(shí)停止運(yùn)動,設(shè)運(yùn)動時(shí)間為t秒.

(1)當(dāng)t= 秒時(shí),動點(diǎn)M、N相遇;

(2)設(shè)△PMN的面積為S,求S與t之間的函數(shù)關(guān)系式;

(3)取線段PM的中點(diǎn)K,連接KA、KC,在整個運(yùn)動過程中,△KAC的面積是否變化?若變化,直接寫出它的最大值和最小值;若不變化,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線經(jīng)過坐標(biāo)原點(diǎn)O和x軸上另一點(diǎn)E,頂點(diǎn)M的坐標(biāo)為(2,4);矩形ABCD的頂點(diǎn)A與點(diǎn)O重合,AD、AB分別在x軸、y軸上,且AD=2,AB=3.

(1)求該拋物線所對應(yīng)的函數(shù)關(guān)系式;

(2)將矩形ABCD以每秒1個單位長度的速度從如圖所示的位置沿x軸的正方向勻速平行移動,同時(shí)一動點(diǎn)P也以相同的速度從點(diǎn)A出發(fā)向B勻速移動,設(shè)它們運(yùn)動的時(shí)間為t秒(0≤t≤3),直線AB與該拋物線的交點(diǎn)為N(如圖2所示).

①當(dāng)t=時(shí),判斷點(diǎn)P是否在直線ME上,并說明理由;

②設(shè)以P、N、C、D為頂點(diǎn)的多邊形面積為S,試問S是否存在最大值?若存在,求出這個最大值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知|a|=5,b24,且a<b,求ab-(ab)的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知在△ABC中,AB=AC。

(1)若D為AC的中點(diǎn),BD把三角形的周長分為24cm和30cm兩部分,求△ABC三邊的長;
(2)若D為AC上一點(diǎn),試說明AC>(BD+DC)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有一組數(shù)據(jù):2,5,5,6,7,每個數(shù)據(jù)加1后的平均數(shù)為( )

A. 3 B. 4

C. 5 D. 6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,AB=AC,點(diǎn)D是BC的中點(diǎn),點(diǎn)E是AD上任意一點(diǎn).
(1)如圖1,連接BE、CE,問:BE=CE成立嗎?并說明理由;

(2)如圖2,若∠BAC=45°,BE的延長線與AC垂直相交于點(diǎn)F時(shí),問:EF=CF成立嗎?并說明理由.

查看答案和解析>>

同步練習(xí)冊答案