【題目】如圖,正方形ABCD的邊長(zhǎng)為3cm,動(dòng)點(diǎn)M從點(diǎn)B出發(fā)以3cm/s的速度沿著邊BC﹣CD﹣DA運(yùn)動(dòng),到達(dá)點(diǎn)A停止運(yùn)動(dòng),另一動(dòng)點(diǎn)N同時(shí)從點(diǎn)B出發(fā),以1cm/s的速度沿著邊BA向點(diǎn)A運(yùn)動(dòng),到達(dá)點(diǎn)A停止運(yùn)動(dòng),設(shè)點(diǎn)M運(yùn)動(dòng)時(shí)間為x(s),△AMN的面積為y(cm2),則y關(guān)于x的函數(shù)圖象是( )

A.
B.
C.
D.

【答案】A
【解析】解:由題可得,BN=x,
當(dāng)0≤x≤1時(shí),M在BC邊上,BM=3x,AN=3﹣x,則
SANM= ANBM,
∴y= (3﹣x)3x=﹣ x2+ x,故C選項(xiàng)錯(cuò)誤;
當(dāng)1≤x≤2時(shí),M點(diǎn)在CD邊上,則
SANM= ANBC,
∴y= (3﹣x)3=﹣ x+ ,故D選項(xiàng)錯(cuò)誤;
當(dāng)2≤x≤3時(shí),M在AD邊上,AM=9﹣3x,
∴SANM= AMAN,
∴y= (9﹣3x)(3﹣x)= (x﹣3)2 , 故B選項(xiàng)錯(cuò)誤;
故選(A).
分三種情況進(jìn)行討論,當(dāng)0≤x≤1時(shí),當(dāng)1≤x≤2時(shí),當(dāng)2≤x≤3時(shí),分別求得△ANM的面積,列出函數(shù)解析式,根據(jù)函數(shù)圖象進(jìn)行判斷即可.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線l:y= x+1交x軸于點(diǎn)A,交y軸于點(diǎn)B,點(diǎn)A1、A2、A3 , …在x軸的正半軸上,點(diǎn)B1、B2、B3 , …在直線l上.若△OB1A1 , △A1B2A2 , △A2B3A3 , …均為等邊三角形,則△A6B7A7的周長(zhǎng)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在已知的△ABC中,按以下步驟作圖: ①分別以B,C為圓心,以大于 BC的長(zhǎng)為半徑作弧,兩弧相交于兩點(diǎn)M,N;
②作直線MN交AB于點(diǎn)D,連接CD.
若CD=AC,∠A=50°,則∠ACB的度數(shù)為(

A.90°
B.95°
C.100°
D.105°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,地面上兩個(gè)村莊C、D處于同一水平線上,一飛行器在空中以6千米/小時(shí)的速度沿MN方向水平飛行,航線MN與C、D在同一鉛直平面內(nèi).當(dāng)該飛行器飛行至村莊C的正上方A處時(shí),測(cè)得∠NAD=60°;該飛行器從A處飛行40分鐘至B處時(shí),測(cè)得∠ABD=75°.求村莊C、D間的距離( 取1.73,結(jié)果精確到0.1千米)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC,AC>BC.
(1)尺規(guī)作圖:在AC邊上求作一點(diǎn)P,使PB=PC(保留作圖痕跡,不寫作法);
(2)若BC=6,∠C=30°,求△PBC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為促進(jìn)我市經(jīng)濟(jì)的快速發(fā)展,加快道路建設(shè),某高速公路建設(shè)工程中需修隧道AB,如圖,在山外一點(diǎn)C測(cè)得BC距離為200m,∠CAB=54°,∠CBA=30°,求隧道AB的長(zhǎng).(參考數(shù)據(jù):sin54°≈0.81,cos54°≈0.59,tan54°≈1.38, ≈1.73,精確到個(gè)位)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC,利用直尺和圓規(guī),根據(jù)下列要求作圖(保留作圖痕跡,不要求寫作法),并根據(jù)要求填空:
(1)作∠ABC的平分線BD交AC于點(diǎn)D;
(2)作線段BD的垂直平分線交AB于點(diǎn)E,交BC于點(diǎn)F.由(1)、(2)可得:線段EF與線段BD的關(guān)系為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】以x為自變量的二次函數(shù)y=x2﹣2(b﹣2)x+b2﹣1的圖象不經(jīng)過第三象限,則實(shí)數(shù)b的取值范圍是(
A.b≥
B.b≥1或b≤﹣1
C.b≥2
D.1≤b≤2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,點(diǎn)D是AB邊上一點(diǎn),以BD為直徑的⊙O與邊AC相切于點(diǎn)E,連接DE并延長(zhǎng)DE交BC的延長(zhǎng)線于點(diǎn)F.
(1)求證:BD=BF;
(2)若CF=1,cosB= ,求⊙O的半徑.

查看答案和解析>>

同步練習(xí)冊(cè)答案