【題目】如圖,在矩形ABCD中,AB=16cm,BC=6cm,動點P、Q分別以3cm/s、2cm/s的速度從點A、C同時出發(fā),點Q從點C向點D移動.

(1)若點P從點A移動到點B停止,點Q隨點P的停止而停止移動,點P、Q分別從點A、C同時出發(fā),問經(jīng)過多長時間P、Q兩點之間的距離是10cm?

(2)若點P沿著AB→BC→CD移動,點P、Q分別從點A、C同時出發(fā),點Q從點C移動到點D停止時,點P隨點Q的停止而停止移動,試探求經(jīng)過多長時間PBQ的面積為12cm2

【答案】(1)經(jīng)過s或sP、Q兩點之間的距離是10cm;(2)經(jīng)過4秒或6秒△PBQ的面積為 12cm2

【解析】試題解析

過點.則根據(jù)題意,得

秒后,點和點的距離是

,即

經(jīng)過和點的距離是

(2)連接.設經(jīng)過后的面積為

①當時,則

解得

②當時,

解得(舍去).

時,

解得(舍去).

綜上所述,經(jīng)過秒或的面積為

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某公司研制出新產(chǎn)品,該產(chǎn)品的成本為每件2400元.在試銷期間,購買不超過10件時,每件銷售價為3000元;購買超過10件時,每多購買一件,所購產(chǎn)品的銷售單價均降低5元,但最低銷售單價為2600元。請解決下列問題:

1)直接寫出:購買這種產(chǎn)品 ________件時,銷售單價恰好為2600元;

2)設購買這種產(chǎn)品x(其中x>10,且x為整數(shù)),該公司所獲利潤為y元,求yx之間的函數(shù)表達式;

3)該公司的銷售人員發(fā)現(xiàn):當購買產(chǎn)品的件數(shù)超過10件時,會出現(xiàn)隨著數(shù)量的增多,公司所獲利潤反而減少這一情況.為使購買數(shù)量越多,公司所獲利潤越大,公司應將最低銷售單價調整為多少元?(其它銷售條件不變)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線yx軸分別交于AB兩點(點A在點B的左側,)與y軸交于點C,作直線AC

1)點B的坐標為   ,直線AC的關系式為   

2)設在直線AC下方的拋物線上有一動點P,過點PPDx軸于D,交直線AC于點E,當CE平分∠OEP時求點P的坐標.

3)點Mx軸上,點N在拋物線上,試問以點A、CM、N為頂點的四邊形能否成為平行四邊形?若存在,直接寫出所有點M的坐標;若不存在,請簡述你的理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線y=14x2+1(如圖所示).

(1)填空:拋物線的頂點坐標是(___,___),對稱軸是___;

(2)已知y軸上一點A(0,2),點P在拋物線上,過點PPBx軸,垂足為B. 若△PAB是等邊三角形,求點P的坐標;

(3)(2)的條件下,點M在直線AP上。在平面內是否存在點N,使四邊形OAMN為菱形?若存在,直接寫出所有滿足條件的點N的坐標;若不存在,請說明理由。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】RtABC中,∠C=90°,AC=20cm,BC=15cm.現(xiàn)有動點P從點A出發(fā),沿AC向點C方向運動,動點Q從點C出發(fā),沿線段CB也向點B方向運動.如果點P的速度是4cm/秒,點Q的速度是2cm/秒,它們同時出發(fā),當有一點到達所在線段的端點時,就停止運動,設運動的時間為t秒.

(1)用含t的代數(shù)式表示RtCPQ的面積S;

(2)t=3秒時,P、Q兩點之間的距離是多少?

(3)t為多少秒時,以點C、P、Q為頂點的三角形與△ABC相似?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,二次函數(shù)的圖象開口向上,圖象經(jīng)過點(-1,2)和(1,0),且與y

軸相交于負半軸。給出四個結論:①;②;③;④ ,其中正確結論的序

號是___________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖在平面直角坐標系中,四邊形OABC是正方形,A的坐標是(4,0),p為邊AB上的一點,CPB=60°,沿CP折疊正方形后,B落在平面內B’處,B’的坐標為(

A.(2, 2)B.(, 2-2)C.(2, 4-2)D.(, 4-2)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,在RtABC中,斜邊AC的中點M關于BC的對稱點為點O,將△ABC繞點O順時針旋轉至△DCE,連接BD,BE

1)在①∠BOE,②∠ACD,③∠COE中,等于旋轉角的是   (填寫序號即可);

2)判斷∠A和∠BEC的數(shù)量關系,并證明;

3)點NBD的中點,連接MN,若MN2,求BE的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,反比例函數(shù)y的圖象過點A11),將其圖象沿直線yx平移到點B22)處,過點作BCx軸,交原圖象于點D,則陰影部分(△ABD)的面積為_____

查看答案和解析>>

同步練習冊答案