【題目】如圖,在等腰直角△ABC中,∠ACB=90°,CO⊥AB于點O,點D、E分別在邊AC、BC上,且AD=CE,連結(jié)DE交CO于點P,給出以下結(jié)論:

①△DOE是等腰直角三角形;②∠CDE=∠COE;③若AC=1,則四邊形CEOD的面積為;④,其中所有正確結(jié)論的序號是

【答案】①②③④

【解析】

試題分析:①正確.如圖,∵∠ACB=90°,AC=BC,CO⊥AB

∴AO=OB=OC,∠A=∠B=∠ACO=∠BCO=45°,在△ADO和△CEO中,OA=OC,A=ECO,AD=CE,∴△ADO≌△CEO,∴DO=OE,∠AOD=∠COE,∴∠AOC=∠DOE=90°,∴△DOE是等腰直角三角形.故①正確.

②正確.∵∠DCE+∠DOE=180°,∴D、C、E、O四點共圓,∴∠CDE=∠COE,故②正確.

③正確.∵AC=BC=1,∴S△ABC=×1×1=,S四邊形DCEO=S△DOC+S△CEO=S△CDO+S△ADO=S△AOC=S△ABC=,故③正確.

④正確.∵D、C、E、O四點共圓,∴OPPC=DPPE,∴+2DPPE=+2OPPC=2OP(OP+PC)=2OPOC,∵∠OEP=∠DCO=∠OCE=45°,∠POE=∠COE,∴△OPE∽△OEC,∴,∴OPOC=,∴+2DPPE===,∵CD=BE,CE=AD,∴,∴

故④正確.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2011廣西崇左,18,3分)已知:二次函數(shù)y=ax2+bx+ca≠0)的圖象如圖所示,下列結(jié)論中:abc0;②2a+b0;a+bmam+b)(m≠1的實數(shù));a+c2b2;a1.其中正確的項是( )

A. ①⑤ B. ①②⑤ C. ②⑤ D. ①③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠BAC90°,點EBC邊上,且CACE,過A,C,E三點的⊙OAB于另一點F,作直徑AD,連結(jié)DE并延長交AB于點G,連結(jié)CDCF

1)求證:四邊形DCFG是平行四邊形;(2)當(dāng)BE4,CDAB時,求⊙O的直徑長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩地相距300千米,一輛貨車和一輛轎車先后從甲地出發(fā)駛向乙地,如圖,線段OA表示貨車離甲地距離y(千米)與時間x(小時)之間的函數(shù)關(guān)系;折線OBCDA表示轎車離甲地距離y(千米)與時間x(小時)之間的函數(shù)關(guān)系.請根據(jù)圖象解答下列問題:

1)當(dāng)轎車剛到乙地時,此時貨車距離乙地   千米;

2)當(dāng)轎車與貨車相遇時,求此時x的值;

3)在兩車行駛過程中,當(dāng)轎車與貨車相距20千米時,求x的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AB=4cm,BC=8cm,動點M從點D出發(fā),按折線DCBAD方向以2cm/s的速度運動,動點N從點D出發(fā),按折線DABCD方向以1cm/s的速度運動.若動點M、N同時出發(fā),相遇時停止運動,若點E在線段BC上,且BE=3cm,經(jīng)過_____秒鐘,點A、EM、N組成平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在△ABC中,∠ABC=90°,AO是△ABC的角平分線,以O為圓心,OB為半徑作圓交BC于點D

1)求證:直線AC是⊙O的切線;

2)在圖2中,設(shè)AC與⊙O相切于點E,連結(jié)BE,如果AB=4,tanCBE=

①求BE的長;②求EC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】五一期間,小張把容積為60升的油箱加滿后自駕出行,行駛一段路程后進(jìn)入服務(wù)區(qū)停車休息,休息后,小張離開服務(wù)區(qū)繼續(xù)前行,為能順利到達(dá)目的地,小張需在相距S千米的加油站加油.若小張從出發(fā)點到服務(wù)區(qū)休息點行駛的路程為200千米,且這期間平均油耗為每千米0.12.

(1)求小張離開服務(wù)區(qū)休息點時,油箱內(nèi)還有多少升汽油?

(2)記小張從離開服務(wù)區(qū)休息點到進(jìn)入加油站加油期間的平均油耗為每千米a升,請寫出Sa的函數(shù)關(guān)系式;若0.08≤a≤0.1,求S的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若拋物線yax2+bx+ca≠0)與x軸兩個交點間的距離為6,稱此拋物線為定弦拋物線.已知某定弦拋物線開口向上,對稱軸為直線x2,且通過(1,y1),(3,y2),(﹣1,y3),(﹣3,y4)四點,則y1,y2,y3,y4中為正數(shù)的是( 。

A. y1B. y2C. y3D. y4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)為打造書香校園,購進(jìn)了甲、乙兩種型號的新書柜來放置新買的圖書,甲型號書柜共花了15000元,乙型號書柜共花了18000元,乙型號書柜比甲型號書柜單價便宜了300元,購買乙型號書柜的數(shù)量是甲型號書柜數(shù)量的2倍.求甲、乙型號書柜各購進(jìn)多少個?

查看答案和解析>>

同步練習(xí)冊答案