【題目】(1)計(jì)算: +|1-|-2cos30+()-1-(2019-)0
(2)解不等式組,并求出它的整數(shù)解,再化簡代數(shù)式,從上述整數(shù)解中選擇一個合適的數(shù),求此代數(shù)式的值.
【答案】(1) 0;(2),1
【解析】
先計(jì)算乘方,絕對值化簡,特殊三角函數(shù)值,負(fù)正整指數(shù)冪,零次冪,再根據(jù)有理數(shù)的加法法則計(jì)算.
先解不等式組,求出滿足不等式組的整數(shù)解,再利用分式的加減乘除法則對分式進(jìn)行化簡,最后將滿足條件的值代入計(jì)算.
解:原式=,
=,
=
;
(2) 解:解不等式3x-6≤x,得x≤3,
解不等式,得x>0,
∴該不等式組的解集為0<x≤3.
∴該不等式組的整數(shù)解為1,2,3.
原式= ,
=,
=,
∵要使分式有意義,∴x≠1,3,
∴x=2,
當(dāng)x=2時, ==1.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是將菱形ABCD以點(diǎn)O為中心按順時針方向分別旋轉(zhuǎn)90°,180°,270°后形成的圖形.若∠BAD=60°,AB=2,則圖中陰影部分的面積為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,菱形OABC的邊長為2,∠AOC=60°,點(diǎn)D為AB邊上的一點(diǎn),經(jīng)過O,A,D三點(diǎn)的拋物線與x軸的正半軸交于點(diǎn)E,連結(jié)AE交BC于點(diǎn)F,當(dāng)DF⊥AB時,CE的長為__.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,在中,,.點(diǎn)分別是邊上的動點(diǎn),連接.設(shè)(),,與之間的函數(shù)關(guān)系如圖②所示.
(1)求出圖②中線段所在直線的函數(shù)表達(dá)式;
(2)將沿翻折,得.
①點(diǎn)是否可以落在的某條角平分線上?如果可以,求出相應(yīng)的值;如果不可以,說明理由;
②直接寫出與重疊部分面積的最大值及相應(yīng)的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ABC=∠ACB,以AC為直徑的⊙O分別交AB、BC于點(diǎn)M、N,點(diǎn)P在AB的延長線上,且∠CAB=2∠BCP.
(1)求證:直線CP是⊙O的切線.
(2)若BC=2,sin∠BCP=,求點(diǎn)B到AC的距離.
(3)在第(2)的條件下,求△ACP的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知二次函數(shù)y=ax2+x+c(a≠0)的圖象與y軸交于點(diǎn)A(0,4),與x軸交于點(diǎn)B、C,點(diǎn)C坐標(biāo)為(8,0),連接AB、AC.
(1)請直接寫出二次函數(shù)y=ax2+x+c的表達(dá)式;
(2)判斷△ABC的形狀,并說明理由;
(3)若點(diǎn)N在x軸上運(yùn)動,當(dāng)以點(diǎn)A、N、C為頂點(diǎn)的三角形是等腰三角形時,請寫出此時點(diǎn)N的坐標(biāo);
(4)如圖2,若點(diǎn)N在線段BC上運(yùn)動(不與點(diǎn)B、C重合),過點(diǎn)N作NM∥AC,交AB于點(diǎn)M,當(dāng)△AMN面積最大時,求此時點(diǎn)N的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,反比例函數(shù)的圖象經(jīng)過□的頂點(diǎn),若點(diǎn)的坐標(biāo)分別為,,點(diǎn)的橫坐標(biāo)和縱坐標(biāo)之和為,則的值為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某中學(xué)數(shù)學(xué)活動小組設(shè)計(jì)了如下檢測公路上行駛的汽車速度的實(shí)驗(yàn),先在公路旁選一點(diǎn)C,再在筆直的車道a上確定點(diǎn)D,使CD⊥a,測得CD=42米,在a上點(diǎn)D的同側(cè)取點(diǎn)A、B,使∠CAD=30 o,∠CBD=45o.
(1)求AB的長(結(jié)果保留根號);
(2)若本路段對汽車限速為60km/h,現(xiàn)測得某汽車從A到B用時2秒,這輛汽車是否超速?說明理由.(參考數(shù)據(jù))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】四邊形ABCD是正方形,△BEF是等腰直角三角形,∠BEF=90°,BE=EF,連接DF,G為DF的中點(diǎn),連接EG,CG,EC.
(1)問題發(fā)現(xiàn):如圖1,若點(diǎn)E在CB的延長線上,直接寫出EG與GC的位置關(guān)系及的值;
(1)操作探究:將圖1中的△BEF繞點(diǎn)B順時針旋轉(zhuǎn)至圖2所示位置,請問(1)中所得的結(jié)論是否仍然成立?若成立,請寫出證明過程;若不成立,請說明理由;
(2)解決問題:將圖1中的△BEF繞點(diǎn)B順時針旋轉(zhuǎn),若BE=1,AB=,當(dāng)E,F,D三點(diǎn)共線時,請直接寫出CE的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com