【題目】如圖,在正方形ABCD中,點P是CD邊上一動點,連接PA,分別過點B、D作BE⊥PA、DF⊥PA,垂足分別為E、F,如圖①。
(1)請?zhí)骄?/span>BE、DF、EF這三條線段的長度具有怎樣的數(shù)量關(guān)系?并說明理由。
(2)若點P在DC的延長線上,如圖②,那么這三條線段的長度之間又具有怎樣的數(shù)量關(guān)系?直接寫出結(jié)論。
(3)若點P在CD的延長線上呢,如圖③,直接寫出結(jié)論。
【答案】(1)EF=BE-DF;(2)EF=DF-BE;(3)EF=BE+DF.
【解析】
(1)在圖①中BE、DF、EF這三條線段長度具有這樣的數(shù)量關(guān)系:BE-DF=EF,理由為:由BE垂直于AP,DF垂直于AP,得到一對直角相等,再由四邊形ABCD為正方形,得到AB=AD,且∠BAD為直角,利用同角的余角相等得到一對角相等,利用AAS得到三角形ABE與三角形DFA全等,利用全等三角形對應(yīng)邊相等得到BE=AF,AE=DF,根據(jù)AF-AE=EF,等量代換即可得證;
(2)在圖②中BE、DF、EF這三條線段長度具有這樣的數(shù)量關(guān)系:EF=DF-BE,理由同(1);
(3)在圖③中BE、DF、EF這三條線段長度具有這樣的數(shù)量關(guān)系:EF=BE+DF,理由同(1).
解:(1)∵BE⊥PA,DF⊥PA,
∴∠BEA=∠AFD=90°,
∵四邊形ABCD是正方形,
∴AB=AD,∠BAD=90°,
∴∠BAE+∠DAF=90°,
又∵∠AFD=90°,
∴∠ADF+∠DAF=90°,
∴∠BAE=∠ADF,
在△BAE和△ADF中,
∴△BAE≌△ADF(AAS),
∴BE=AF,AE=DF,
∵AF-AE=EF,
∴EF=BE-DF.
(2)在圖②中BE、DF、EF這三條線段長度具有這樣的數(shù)量關(guān)系:EF=DF-BE;;
∵BE⊥PA,DF⊥PA,
∴∠BEA=∠AFD=90°,
∵四邊形ABCD是正方形,
∴AB=AD,∠BAD=90°,
∴∠BAE+∠DAF=90°,
又∵∠AFD=90°,
∴∠ADF+∠DAF=90°,
∴∠BAE=∠ADF,
在△BAE和△ADF中,
∴△BAE≌△ADF(AAS),
∴BE=AF,AE=DF,
∵AE-AF=EF,
∴EF=DF-BE;.
(3)在圖③中BE、DF、EF這三條線段長度具有這樣的數(shù)量關(guān)系:EF=BE+DF.,
理由為:∵BE⊥PA,DF⊥PA,
∴∠BEA=∠AFD=90°,
∵四邊形ABCD是正方形,
∴AB=AD,∠BAD=90°,
∴∠BAE+∠DAF=90°,
又∵∠AFD=90°,
∴∠ADF+∠DAF=90°,
∴∠BAE=∠ADF,
在△BAE和△ADF中,
∴△BAE≌△ADF(AAS),
∴BE=AF,AE=DF,
∵AE+AF=EF,
∴EF=BE+DF..
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=AC,BE⊥AC于E,且D、E分別是AB、AC的中點,延長BC至點F,使CF=CE.
(1)∠ABC的度數(shù).
(2)求證:BE=FE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC是直角三角形,∠BAC=90°,D是斜邊BC的中點,E,F分別是AB,AC邊上的點,且DE⊥DF.
(1)如圖1,試說明;
(2)如圖2,若AB=AC,BE=12,CF=5,求△DEF的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平行四邊形ABCD中,點A在反比例函數(shù)y=(k≠0)的圖象上,點D在y軸上,點B、點C在x軸上.若平行四邊形ABCD的面積為10,則k的值是( 。
A. ﹣10 B. ﹣5 C. 5 D. 10
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在Rt△ABC中,∠C=90°,∠B=30°,AB=10,點D是射線CB上的一個動點,△ADE是等邊三角形,點F是AB的中點,聯(lián)結(jié)EF.
(1)如圖,當(dāng)點D在線段CB上時,
①求證:△AEF≌△ADC;
②聯(lián)結(jié)BE,設(shè)線段CD=x,線段BE=y,求y關(guān)于x的函數(shù)解析式及定義域;
(2)當(dāng)∠DAB=15°時,求△ADE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正三角形的邊長為.
如圖①,正方形的頂點、在邊上,頂點在邊上,在正三角形及其內(nèi)部,以點為位似中心,作正方形的位似正方形,且使正方形的面積最大(不要求寫作法);
求中作出的正方形的邊長;
如圖②,在正三角形中放入正方形和正方形,使得、在邊上,點、分別在邊、上,求這兩個正方形面積和的最大值和最小值,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O的弦AD∥BC,過點D的切線交BC的延長線于點E,AC∥DE交BD于點H,DO及延長線分別交AC、BC于點G、F.
(1)求證:DF垂直平分AC;
(2)求證:FC=CE;
(3)若弦AD=5cm,AC=8cm,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知點A(0,8),點B(6,8),若點P同時滿足下列條件:①點P到A,B兩點的距離相等;②點P到∠xOy的兩邊距離相等.則點P的坐標(biāo)為( ).
A.(3,5)B.(6,6)C.(3,3)D.(3,6)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com