【題目】作出函數(shù)y=2-2x的圖象,并根據(jù)圖象回答下列問(wèn)題:
(1)y的值隨x的增大而____,減小而____;
(2)圖象與x軸的交點(diǎn)坐標(biāo)是___;與y軸的交點(diǎn)坐標(biāo)是____;
(3)函數(shù)y=2-2x的圖象與坐標(biāo)軸所圍成的三角形的面積是多少?
【答案】(1)減小,增大;(2)(1、0)、(0,2);(3)1;
【解析】
根據(jù)“兩點(diǎn)確定一條直線”作出一次函數(shù)y=2-2x的圖象.
(1)根據(jù)圖象直接回答;
(2)根據(jù)圖象直接回答;
(3)根據(jù)圖象求得相關(guān)線段的長(zhǎng)度,然后由三角形的面積公式求得三角形的面積.
解:令y=0,則x=1;
令x=0,則y=3,即函數(shù)y=2-2x的圖象經(jīng)過(guò)點(diǎn)(1、0)、(0,2),
所以其圖象如圖所示.
(1)根據(jù)圖示知,y的值隨x的增大而減小,減小而增大;
(2)圖象與x軸的交點(diǎn)坐標(biāo)是(1,0);與y軸的交點(diǎn)坐標(biāo)是(0,2);
(3)由圖,可知S=×1×2=1.
故答案為:(1)減小,增大;(2)(1、0)、(0,2);(3)1;
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,長(zhǎng)方形的紙片ABCD中,AD=3cm,AB=4cm,把該紙片沿直線AC折疊,點(diǎn)B落在點(diǎn)E處,AE交DC于點(diǎn)F.
(1)圖中有等腰三角形嗎?說(shuō)明理由.
(2)求重疊部分(即△ACF)的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】順次連接對(duì)角線相等的四邊形各邊中點(diǎn),所得四邊形是( )
A. 矩形 B. 平行四邊形 C. 菱形 D. 任意四邊形
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,和均是等邊三角形,、分別與、交于點(diǎn)、,且、、在同一直線上,有如下結(jié)論:①≌;②;③;④,其中正確結(jié)論有______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)在第二象限,其中,滿足等式,點(diǎn)在第一象限內(nèi),射線,與軸交于點(diǎn).
(1)當(dāng)時(shí),求點(diǎn)的坐標(biāo);
(2)點(diǎn)在軸上從出發(fā)以每秒1個(gè)單位長(zhǎng)度的速度向點(diǎn)運(yùn)動(dòng)(到達(dá)點(diǎn)后停止運(yùn)動(dòng)),求當(dāng)時(shí)間為秒時(shí)(不考慮點(diǎn)與點(diǎn)重合的情況),,,的大小關(guān)系;
(3)如圖,若,點(diǎn)是射線上一動(dòng)點(diǎn),,的平分線交于點(diǎn).的大小是否隨點(diǎn)的位置變化發(fā)生改變,若不變,請(qǐng)求出的度數(shù);若改變,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線y=-x2+mx+3與x軸交于點(diǎn)A、B兩點(diǎn),與y軸交于C點(diǎn),點(diǎn)B的坐標(biāo)為(3,0),拋物線與直線y=-x+3交于C、D兩點(diǎn).連接BD、AD.
(1)求m的值.
(2)拋物線上有一點(diǎn)P,滿足S△ABP=4S△ABD,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,長(zhǎng)方體的長(zhǎng)為,寬為,高為,點(diǎn)離點(diǎn)的距離為,一只螞蟻如果要沿著長(zhǎng)方體的表面從點(diǎn)爬到點(diǎn),需要爬行的最短距離是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,PA,PB是⊙O的切線,A,B為切點(diǎn).連接AO并延長(zhǎng)交PB的延長(zhǎng)線于點(diǎn)C,連接PO交⊙O于點(diǎn)D.
(1)求證:PO平分∠APC;
(2)連接BD,若∠C=30°,求證:DB∥AC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,A,B,C三點(diǎn)在同一直線上,分別以AB,BC(AB>BC)為邊,在直線AC的同側(cè)作等邊ΔABD和等邊ΔBCE,連接AE交BD于點(diǎn)M,連接CD交BE于點(diǎn)N,連接MN. 以下結(jié)論:①AE=DC,②MN//AB,③BD⊥AE,④∠DPM=60°,⑤ΔBMN是等邊三角形.其中正確的是__________(把所有正確的序號(hào)都填上).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com