【題目】如圖,在矩形中,,,點(diǎn)是邊的中點(diǎn),聯(lián)結(jié),若將沿翻折,點(diǎn)落在點(diǎn)處,聯(lián)結(jié),則______.

【答案】

【解析】

由矩形的性質(zhì)得出∠B90°,BCAD10,由勾股定理求出AE,由翻折變換的性質(zhì)得出△AFE≌△ABE,得出∠AEF=∠AEBEFBE5,因此EFCE,由等腰三角形的性質(zhì)得出∠EFC=∠ECF,由三角形的外角性質(zhì)得出∠AEB=∠ECF,cosECFcosAEB,即可得出結(jié)果.

如圖所示:

∵四邊形ABCD是矩形,

∴∠B90°,BCAD10

EBC的中點(diǎn),

BECEBC5,

AE,

由翻折變換的性質(zhì)得:△AFE≌△ABE,

∴∠AEF=∠AEB,EFBE5,

EFCE

∴∠EFC=∠ECF,

∵∠BEF=∠EFC+∠ECF

∴∠AEB=∠ECF,

cosECFcosAEB=

故答案為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為滿足市場需求,某超市在五月初五“端午節(jié)”來臨前夕購進(jìn)一種品牌

粽子,每盒進(jìn)價(jià)是40元超市規(guī)定每盒售價(jià)不得少于45元根據(jù)以往銷售經(jīng)驗(yàn)發(fā)現(xiàn):當(dāng)售價(jià)定為每盒45元時(shí),每天可賣出700盒,每盒售價(jià)每提高1元每天要少賣出20盒

1試求出每天的銷售量y與每盒售價(jià)之間的函數(shù)關(guān)系式;4分

2當(dāng)每盒售價(jià)定為多少元時(shí),每天銷售的利潤最大?最大利潤是多少?6分

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】正方形ABCD的邊長為3,E、F分別是AB、BC邊上的點(diǎn),且EDF=45°.將DAE繞點(diǎn)D逆時(shí)針旋轉(zhuǎn)90°,得到DCM.

1)求證:EF=FM

2)當(dāng)AE=1時(shí),求EF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某數(shù)學(xué)興趣小組根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對分段函數(shù)y的圖象與性質(zhì)進(jìn)了探究,請補(bǔ)充完整以下的探索過程.

x

2

1

0

1

2

3

4

y

3

0

1

0

1

0

3

1)填空:a   b   

2提上述表格補(bǔ)全函數(shù)圖象;該函數(shù)圖象是關(guān)于   對稱的   (橫線上填軸對稱或中心對稱)圖形.

3)若直線yx+t與該函數(shù)圖象有三個(gè)交點(diǎn),直接寫出t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形OABC的一邊OAx軸的負(fù)半軸上,O是坐標(biāo)原點(diǎn),tan∠AOC=,反比例函數(shù)y=的圖象經(jīng)過點(diǎn)C,與AB交于點(diǎn)D,若COD的面積為20,則k的值等于_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)A,B的坐標(biāo)分別為(1,0),(2,0).若二次函數(shù)y=x2+(a﹣3)x+3的圖象與線段AB只有一個(gè)交點(diǎn),則a的取值范圍是_______________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】九(1)班數(shù)學(xué)興趣小組經(jīng)過市場調(diào)查,整理出某種商品在第x1≤x≤90)天的售價(jià)與銷售量的相關(guān)信息如下表:

時(shí)間x(天)

1≤x50

50≤x≤90

售價(jià)(元/件)

x40

90

每天銷量(件)

2002x

已知該商品的進(jìn)價(jià)為每件30元,設(shè)銷售該商品的每天利潤為y[

1)求出yx的函數(shù)關(guān)系式;

2)問銷售該商品第幾天時(shí),當(dāng)天銷售利潤最大,最大利潤是多少?

3)該商品在銷售過程中,共有多少天每天銷售利潤不低于4800元?請直接寫出結(jié)果.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,點(diǎn)Ax軸的負(fù)半軸上,點(diǎn)B的坐標(biāo)為(﹣2,﹣4),拋物線yax2+bx的對稱軸為x=﹣5,該拋物線經(jīng)過點(diǎn)A、B,點(diǎn)EAB與對稱軸x=﹣5的交點(diǎn).

1)如圖1,點(diǎn)P為直線AB下方的拋物線上的任意一點(diǎn),在對稱軸x=﹣5上有一動點(diǎn)M,當(dāng)△ABP的面積最大時(shí),求|PMOM|的最大值以及點(diǎn)P的坐標(biāo).

2)如圖2,把△ABO沿射線BA方向平移,得到△CDF,其中點(diǎn)CD、F分別是點(diǎn)A、BO的對應(yīng)點(diǎn),且點(diǎn)F與點(diǎn)O不重合,平移過程中,是否存在這樣的點(diǎn)F,使得以點(diǎn)AE、F為頂點(diǎn)的三角形為等腰三角形?若存在,直接寫出點(diǎn)F的坐標(biāo),若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們知道,三角形三個(gè)內(nèi)角平分線的交點(diǎn)叫做三角形的內(nèi)心,已知點(diǎn)I為ABC的內(nèi)心.

(1)如圖1,連接AI并延長交BC于點(diǎn)D,若AB=AC=3,BC=2,求ID的長;

(2)如圖2,過點(diǎn)I作直線交AB于點(diǎn)M,交AC于點(diǎn)N.

若MNAI,求證:MI2=BMCN;

如圖3,AI交BC于點(diǎn)D,若BAC=60°,AI=4,求的值.

查看答案和解析>>

同步練習(xí)冊答案