【題目】如圖,在等邊三角形ABC中,BC邊上的高AD=6,E是高AD上的一個動點,F(xiàn)是邊AB的中點,在點E運動的過程中,存在EB+EF的最小值,則這個最小值是( )

A.3
B.4
C.5
D.6

【答案】D
【解析】連接CF.

∵等邊△ABC中,AD是BC邊上的中線,
∴AD是BC邊上的高線,即AD垂直平分BC,
∴EB=EC.當(dāng)C、F、E三點共線時,EF+EC=EF+BE=CF
. ∵等邊△ABC中,F(xiàn)是AB邊的中點,
∴AD=CF=6,
∴EF+BE的最小值為6.
所以答案是:D.
【考點精析】解答此題的關(guān)鍵在于理解軸對稱-最短路線問題的相關(guān)知識,掌握已知起點結(jié)點,求最短路徑;與確定起點相反,已知終點結(jié)點,求最短路徑;已知起點和終點,求兩結(jié)點之間的最短路徑;求圖中所有最短路徑.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】因式分解a3﹣4a的結(jié)果是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】不等式2x 1 3x 1 的解集為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知m+n﹣2=0,則3m×3n的值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線C1y=ax2+bx+a≠0)經(jīng)過點A-10)和B3,0).

1)求拋物線C1的解析式,并寫出其頂點C的坐標(biāo);

2)如圖1,把拋物線C1沿著直線AC方向平移到某處時得到拋物線C2,此時點A,C分別平移到點D,E處.設(shè)點F在拋物線C1上且在x軸的下方,若△DEF是以EF為底的等腰直角三角形,求點F的坐標(biāo);

3)如圖2,在(2)的條件下,設(shè)點M是線段BC上一動點,EN⊥EM交直線BF于點N,點P為線段MN的中點,當(dāng)點M從點B向點C運動時:

①tan∠ENM的值如何變化?請說明理由;

M到達(dá)點C時,直接寫出點P經(jīng)過的路線長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在學(xué)校開展的“學(xué)習(xí)交通安全知識,爭做文明中學(xué)生”主題活動月中,學(xué)校德工處隨機選取了該校部分學(xué)生,對闖紅燈情況進(jìn)行了一次調(diào)查,調(diào)查結(jié)果有三種情況:A.從不闖紅燈;B.偶爾闖紅燈;C經(jīng)常闖紅燈.德工處將調(diào)查的數(shù)據(jù)進(jìn)行了整理,并繪制了尚不完整的統(tǒng)計圖如下,請根據(jù)相關(guān)信息,回答下列問題:

(1)本次活動共調(diào)查了_______名學(xué)生;

(2)請補全(圖二),并求(圖一)中 B區(qū)域的圓心角的度數(shù)_______;

(3)若該校有2400名學(xué)生,請估算該校 不嚴(yán)格遵守信號燈指示的有____人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某高速鐵路工程指揮部,要對某路段工程進(jìn)行招標(biāo),接到了甲、乙兩個工程隊的投標(biāo)書.從投標(biāo)書中得知:甲隊單獨完成這項工程所需天數(shù)是乙隊單獨完成這項工程所需天數(shù)的 :若由甲隊先做20天,剩下的工程再由甲、乙兩隊合作60天完成.
(1)求甲、乙兩隊單獨完成這項工程各需多少天?
(2)已知甲隊每天的施工費用為8.6萬元,乙隊每天的施工費用為5.4萬元,工程預(yù)算的施工費用為1000萬元.若在甲、乙工程隊工作效率不變的情況下使施工時間最短,問擬安排預(yù)算的施工費用是否夠用?若不夠用,需追加預(yù)算多少萬元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】等腰三角形兩邊長為48,它的周長是(

A. 16 B. 18 C. 20 D. 1618

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)平面中,將拋物線y=2x2先向上平移1個單位,再向右平移1個單位,那么平移后的拋物線解析式是

查看答案和解析>>

同步練習(xí)冊答案