【題目】如圖,拋物線y=﹣ x2+mx+n與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,拋物線的對(duì)稱軸交x軸于點(diǎn)D,已知A(﹣1,0),C(0,2).

(1)求拋物線的表達(dá)式;
(2)在拋物線的對(duì)稱軸上是否存在點(diǎn)P,使△PCD是以CD為腰的等腰三角形?如果存在,直接寫(xiě)出P點(diǎn)的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由;
(3)點(diǎn)E是線段BC上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)E作x軸的垂線與拋物線相交于點(diǎn)F,當(dāng)點(diǎn)E運(yùn)動(dòng)到什么位置時(shí),四邊形CDBF的面積最大?求出四邊形CDBF的最大面積及此時(shí)E點(diǎn)的坐標(biāo).

【答案】
(1)

解:把A(﹣1,0),C(0,2)代入y=﹣ x2+mx+n得 ,解得 ,

∴拋物線解析式為y=﹣ x2+ x+2;


(2)

解:存在.

拋物線的對(duì)稱軸為直線x=﹣ = ,

則D( ,0),

∴CD= = = ,

如圖1,當(dāng)CP=CD時(shí),則P1 ,4);

當(dāng)DP=DC時(shí),則P2 ),P3 ,﹣ ),

綜上所述,滿足條件的P點(diǎn)坐標(biāo)為( ,4)或( , )或( ,﹣ );


(3)

解:當(dāng)y=0時(shí),=﹣ x2+ x+2=0,解得x1=﹣1,x2=4,則B(4,0),

設(shè)直線BC的解析式為y=kx+b,

把B(4,0),C(0,2)代入得 ,解得 ,

∴直線BC的解析式為y=﹣ x+2,

設(shè)E(x,﹣ x+2)(0≤x≤4),則F(x,﹣ x2+ x+2),

∴FE=﹣ x2+ x+2﹣(﹣ x+2)=﹣ x2+2x,

∵SBCF=SBEF+SCEF= 4EF=2(﹣ x2+2x)=﹣x2+4x,

而SBCD= ×2×(4﹣ )= ,

∴S四邊形CDBF=SBCF+SBCD

=﹣x2+4x+ (0≤x≤4),

=﹣(x﹣2)2+

當(dāng)x=2時(shí),S四邊形CDBF有最大值,最大值為 ,此時(shí)E點(diǎn)坐標(biāo)為(2,1).


【解析】(1)直接把A點(diǎn)和C點(diǎn)坐標(biāo)代入y=﹣ x2+mx+n得m、n的方程組,然后解方程組求出m、n即可得到拋物線解析式;(2)先利用拋物線對(duì)稱軸方程求出拋物線的對(duì)稱軸為直線x=﹣ ,則D( ,0),則利用勾股定理計(jì)算出CD= ,然后分類討論:如圖1,當(dāng)CP=CD時(shí),利用等腰三角形的性質(zhì)易得P1 ,4);當(dāng)DP=DC時(shí),易得P2 , ),P3 ,﹣ );(3)先根據(jù)拋物線與x軸的交點(diǎn)問(wèn)題求出B(4,0),再利用待定系數(shù)法求出直線BC的解析式為y=﹣ x+2,利用一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征和二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征,設(shè)E(x,﹣ x+2)(0≤x≤4),則F(x,﹣ x2+ x+2),則FE=﹣ x2+2x,由于△BEF和△CEF共底邊,高的和為4,則SBCF=SBEF+SCEF= 4EF=﹣x2+4x,加上SBCD= ,所以S四邊形CDBF=SBCF+SBCD=﹣x2+4x+ (0≤x≤4),然后根據(jù)二次函數(shù)的性質(zhì)求四邊形CDBF的面積最大,并得到此時(shí)E點(diǎn)坐標(biāo).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠ACB=90°,CD是中線,AC=BC,一個(gè)以點(diǎn)D為頂點(diǎn)的45°角繞點(diǎn)D旋轉(zhuǎn),使角的兩邊分別與AC、BC的延長(zhǎng)線相交,交點(diǎn)分別為點(diǎn)E,F(xiàn),DF與AC交于點(diǎn)M,DE與BC交于點(diǎn)N.
(1)如圖1,若CE=CF,求證:DE=DF;

(2)如圖2,在∠EDF繞點(diǎn)D旋轉(zhuǎn)的過(guò)程中:
①探究三條線段AB,CE,CF之間的數(shù)量關(guān)系,并說(shuō)明理由;
②若CE=4,CF=2,求DN的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某工廠加工一批零件,為了提高工人工作積極性,工廠規(guī)定每名工人每次薪金如下:生產(chǎn)的零件不超過(guò)a件,則每件3元,超過(guò)a件,超過(guò)部分每件b元,如圖是一名工人一天獲得薪金y(元)與其生產(chǎn)的件數(shù)x(件)之間的函數(shù)關(guān)系式,則下列結(jié)論錯(cuò)誤的是(
A.a=20
B.b=4
C.若工人甲一天獲得薪金180元,則他共生產(chǎn)50件
D.若工人乙一天生產(chǎn)m(件),則他獲得薪金4m元

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了抓住文化藝術(shù)節(jié)的商機(jī),某商店決定購(gòu)進(jìn)A、B兩種藝術(shù)節(jié)紀(jì)念品.若購(gòu)進(jìn)A種紀(jì)念品8件,B種紀(jì)念品3件,需要950元;若購(gòu)進(jìn)A種紀(jì)念品5件,B種紀(jì)念品6件,需要800元.
(1)求購(gòu)進(jìn)A、B兩種紀(jì)念品每件各需多少元?
(2)若該商店決定購(gòu)進(jìn)這兩種紀(jì)念品共100件,考慮市場(chǎng)需求和資金周轉(zhuǎn),用于購(gòu)買(mǎi)這100件紀(jì)念品的資金不超過(guò)8 000元,那么該商店至多購(gòu)進(jìn)A種紀(jì)念品幾件?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了深入貫徹黨的十八大精神,我省某中學(xué)為了深入學(xué)習(xí)社會(huì)主義核心價(jià)值觀,特對(duì)本校部分學(xué)生(隨機(jī)抽樣)進(jìn)行了一次相關(guān)知識(shí)的測(cè)試(成績(jī)分為A,B,C,D,E五個(gè)組,x表示測(cè)試成績(jī)),通過(guò)對(duì)測(cè)試成績(jī)的分析,得到如圖所示的兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)圖中提供的信息解答以下問(wèn)題.
A組:90≤x≤100 B組:80≤x<90 C組:70≤x<80 D組:60≤x<70 E組:x<60

(1)參加調(diào)查測(cè)試的學(xué)生共有人;請(qǐng)將兩幅統(tǒng)計(jì)圖補(bǔ)充完整.
(2)本次調(diào)查測(cè)試成績(jī)的中位數(shù)落在組內(nèi).
(3)本次調(diào)查測(cè)試成績(jī)?cè)?0分以上(含80分)為優(yōu)秀,該中學(xué)共有3000人,請(qǐng)估計(jì)全校測(cè)試成績(jī)?yōu)閮?yōu)秀的學(xué)生有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,BC=4,以點(diǎn)A為圓心,2為半徑的⊙A與BC相切于點(diǎn)D,交AB于點(diǎn)E,交AC于點(diǎn)F,點(diǎn)P是⊙A上的一點(diǎn),且∠EPF=45°,則圖中陰影部分的面積為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,在△ABC中,∠BAC=90°,AB=AC,點(diǎn)D為直線BC上一動(dòng)點(diǎn)(點(diǎn)D不與B、C重合),以AD為邊在AD的上邊作正方形ADEF,連接CF.
(1)觀察猜想:如圖1,當(dāng)點(diǎn)D在線段BC上時(shí),①BC與CF的位置關(guān)系為:;②BC、CD、CF之間的數(shù)量關(guān)系為:

(2)數(shù)學(xué)思考:如圖2,當(dāng)點(diǎn)D在線段CB的延長(zhǎng)線上時(shí),以上①②關(guān)系是否成立,請(qǐng)?jiān)诤竺娴臋M線上寫(xiě)出正確的結(jié)論.①BC與CF的位置關(guān)系為:;②BC、CD、CF之間的數(shù)量關(guān)系為:

(3)如圖3,當(dāng)點(diǎn)D在線段BC的延長(zhǎng)線上時(shí),延長(zhǎng)BA交CF于點(diǎn)G,連接GD,若已知AB=2 ,CD= BC,請(qǐng)求出DG的長(zhǎng)(寫(xiě)出求解過(guò)程).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在Rt△AOB中,∠AOB=90°,OA=3,OB=2,將Rt△AOB繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°后得Rt△FOE,將線段EF繞點(diǎn)E逆時(shí)針旋轉(zhuǎn)90°后得線段ED,分別以O(shè),E為圓心,OA、ED長(zhǎng)為半徑畫(huà)弧AF和弧DF,連接AD,則圖中陰影部分面積是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將半徑為6的⊙O沿AB折疊,弧AB與AB垂直的半徑OC交于點(diǎn)D且CD=2OD,則折痕AB的長(zhǎng)為( )

A.  
B.
C.6   
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案