【題目】如圖①,中,,點為邊上一點,于點,點為中點,點為中點,的延長線交于點,≌.
(1)求證:;
(2)求的大。
(3)如圖②,過點作交的延長線于點,求證:四邊形為矩形.
【答案】(1)證明見解析;(2)∠MEF=30°;(3)證明見解析.
【解析】
(1)利用直角三角形斜邊中線的性質(zhì)定理可得CM=DB,EM=DB,問題得證;
(2)利用全等三角形的性質(zhì),證明△DEM是等邊三角形,即可解決問題;
(3)設(shè)FM=a,則AE=CM=EM=a,EF=2a,推出,,得到AN∥PM,易證四邊形ANMP是平行四邊形,結(jié)合∠P=90°即可解決問題.
解:(1)證明:如圖①中,
∵DE⊥AB,
∴∠DEB=∠DCB=90°,
∵DM=MB,
∴CM=DB,EM=DB,
∴CM=EM;
(2)解:∵△DAE≌△CEM,CM=EM,
∴AE=ED=EM=CM=DM,∠AED=∠CME=90°
∴△ADE是等腰直角三角形,△DEM是等邊三角形,
∵∠AED=∠DEF=90°,∠DEM=60°,
∴∠MEF=30°;
(3)證明:如圖②中,設(shè)FM=a.
由(2)可知△ADE是等腰直角三角形,△DEM是等邊三角形,∠MEF=30°,
∴AE=CM=EM=a,EF=2a,
∵CN=NM,
∴MN=a,
∴,,
∴EM∥AN,
∵AP⊥PM,MN⊥PM,
∴AP∥MN,
∴四邊形ANMP是平行四邊形,
∵∠P=90°,
∴四邊形ANMP是矩形.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知各頂點的坐標(biāo)分別為,,.
(1)畫出以點B為旋轉(zhuǎn)中心,按順時針方向旋轉(zhuǎn)后得到的;
(2)將先向右平移5個單位長度,再向上平移3個單位長度,得到.
①在圖中畫出,并寫出點A的對應(yīng)點的坐標(biāo);
②如果將看成是由經(jīng)過一次平移得到的,請指出這一平移的平移方向和平移距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】七年級某班級為了促進(jìn)同學(xué)養(yǎng)成良好的學(xué)習(xí)習(xí)慣,每天都對同學(xué)進(jìn)行學(xué)規(guī)管理記分.如下是小李同學(xué)第8周學(xué)規(guī)得分(規(guī)定:加分為“+”,扣分為“﹣”).
(1)第8周小李學(xué)規(guī)得分總計是多少?
(2)根據(jù)班規(guī),一學(xué)期里班級還會將同學(xué)每周的學(xué)規(guī)得分進(jìn)行累加.已知小李同學(xué)第7周末學(xué)規(guī)累加分?jǐn)?shù)為98分,若他在第9周末學(xué)規(guī)累加分?jǐn)?shù)達(dá)到105分,則他第9周的學(xué)規(guī)得分總計是多少分?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在中,,,,過點作直線,將繞點順時針得到(點,的對應(yīng)點分別為,),射線,分別交直線于點,.
(1)如圖1,當(dāng)與重合時,求的度數(shù);
(2)如圖2,設(shè)與的交點為,當(dāng)為的中點時,求線段的長;
(3)在旋轉(zhuǎn)過程時,當(dāng)點分別在,的延長線上時,試探究四邊形的面積是否存在最小值.若存在,求出四邊形的最小面積;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD,點P是對角線AC上一點,連結(jié)BP,過P作PQ⊥BP,PQ交CD于Q,若AP=,CQ=3,則四邊形PBCQ的面積為_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,,.在下列解答中,填空(理由或數(shù)學(xué)式):
解:∵(已知),
∴(______),
∵(已知),
∴∠______=∠______(等量代換),
∴______(______),
∴(______).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,線段AB、CD相交于點O,連結(jié)AD、CB,我們把形如圖1的圖形稱之為“8字形”.如圖2,在圖1的條件下,∠DAB和∠BCD的平分線AP和CP相交于點P,并且與CD、AB分別相交于點M、N.試解答下列問題:
(1)在圖1中,請直接寫出∠A、∠B、∠C、∠D之間的數(shù)量關(guān)系;
(2)仔細(xì)觀察,在圖2中“8字形”有多少個;
(3)圖2中,當(dāng)∠D=50°,∠B=40°時,求∠P的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】綜合與探究:如圖,射線在上方,射線在下方,,(,),與分別是和 的平分線.
操作發(fā)現(xiàn):(1)當(dāng),時,求的度數(shù);
(2)繼續(xù)探究,當(dāng)固定不變,把擴大為時,求的度數(shù);
探索發(fā)現(xiàn):(3)在完成(1)(2)時,小亮發(fā)現(xiàn)與之間存在一個固定的數(shù)量關(guān)系.你認(rèn)為小亮說的對嗎?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,長方體的長為15寬為10,高為20,點B離點C的距離為5,一只螞蟻如果要沿著長方體的表面從點A爬到點B,需要爬行的最短距離是( )
A. 20 B. 25 C. 30 D. 32
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com