【題目】拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=1,與x軸的一個交點坐標為(﹣1,0),其部分圖象如圖所示,下列結論:
①4ac<b2;②方程ax2+bx+c=0的兩個根是x1=﹣1,x2=3;
③3a+c=0;④當y>0時,x的取值范圍是﹣1≤x<3;⑤當x<0時,y隨x增大而增大,其中結論正確的是_____(只需填序號)
【答案】①②③⑤
【解析】
利用拋物線與x軸的交點個數(shù)可對①進行判斷;利用拋物線的對稱性得到拋物線與x軸的一個交點坐標為(3,0),則可對②進行判斷;由對稱軸方程得到b=-2a,然后根據(jù)x=-1時函數(shù)值為0可得到3a+c=0,則可對③進行判斷;根據(jù)二次函數(shù)的性質對④進行判斷.
①∵拋物線與x軸有兩個交點,
∴△=b2﹣4ac>0,
∴4ac<b2,結論①正確;
②∵拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=1,與x軸的一個交點坐標為(﹣1,0),
∴拋物線與x軸的另一交點坐標為(3,0),
∴方程ax2+bx+c=0的兩個根是x1=﹣1,x2=3,結論②正確;
③∵拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=1,
∴﹣=1,
∴b=﹣2a.
∵當x=﹣1時,y=0,
∴a﹣b+c=0,即3a+c=0,結論③正確;
④∵拋物線與x軸的交點坐標為(﹣1,0)、(3,0),
∴當y>0時,x的取值范圍是﹣1<x<3,結論④錯誤;
⑤∵拋物線開口向下,對稱軸為直線x=1,
∴當x<0時,y隨x增大而增大,結論⑤正確.
綜上所述:正確的結論有①②③⑤.
故答案為:①②③⑤.
科目:初中數(shù)學 來源: 題型:
【題目】探究與發(fā)現(xiàn):在△ABC中,∠B=∠C,點D在BC邊上(點B、C除外),點E在AC邊上,且∠ADE=∠AED,連接DE.
(1)如圖①,若∠B=∠C=45,
①當∠BAD=60時,求∠CDE的度數(shù);
②試猜想∠BAD與∠CDE的數(shù)量關系,并說明理由.
(2)深入探究:如圖②,若∠B=∠C,但∠C≠45,其他條件不變,試探究∠BAD與∠CDE的數(shù)量關系.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在菱形 ABCD 中,AB=2,∠DAB=60°,點 E 是 AD 邊的中點,點 M 是 AB 邊上的一個動點(不與點 A 重合), 延長 ME 交 CD 的延長線于點 N,連接MD,AN.
(1)求證:四邊形 AMDN 是平行四邊形.
(2)當 AM 的值為何值時,四邊形 AMDN 是矩形?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,,的平分線與BC的延長線交于點E,與DC交于點F,且點F為邊DC的中點,,垂足為G,若,則AE的邊長為
A. B. C. 4 D. 8
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC 中,點O是AC邊上的一個動點,過點O作直線MN∥BC,設MN交∠BCA的角平分線于點E,交∠BCA的外角平分線于點F
(1)求證:EO=FO;
(2)當點O運動到何處時,四邊形AECF是矩形?并證明你的結論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC是等腰三角形,且AC=BC,∠ACB=120°,在AB上取一點O,使OB=OC,以O為圓心,OB為半徑作圓,過C作CD∥AB交⊙O于點D,連接BD.
(1)猜想AC與⊙O的位置關系,并證明你的猜想;
(2)已知AC=6,求扇形OBC圍成的圓錐的底面圓半徑.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠A=90°,AD⊥BC,垂足為D.給出下列四個結論:①sinα=sinB;②sinβ=sinC;③sinB=cosC;④sinα=cosβ.其中正確的結論有_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,在長方形ABCD中,AB=4,AD=6.延長BC到點E,使CE=2,連接DE,動點P從點B出發(fā),以每秒2個單位的速度沿BC﹣CD﹣DA向終點A運動,設點P的運動時間為t秒,當t的值為_____秒時,△ABP和△DCE全等.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,五邊形ABCDE中,∠A=140°,∠B=120°,∠E=90°,CP和DP分別是∠BCD、∠EDC的外角平分線,且相交于點P,則∠CPD=__________°.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com